A NEW GENUS AND SPECIES OF FROG (ANURA: LEPTODACTYLIDAE: MYOBATRACHINAE) FROM SOUTHERN TASMANIA

by D. E. Rounsevell*, D. Ziegeler*, P. B. Brown*, Margaret Daviest \& M. J. Littlejohn \ddagger

Abstract

Summary Rounseveid. D. E., Ziegeler, D. Brown. P. B. Davies, M. \& Lattipholin. M. 1. (1994) A new genus and xpecies of frog (Anura: Leptodactylidae: Myobarachinac) from southern Tasmania. Truncs. R. Sin. S. Sust, 1183). 171-185. 31 November. 1994. Bryobarrachus nümbus gen, el, sp nov, is dewerihed from moist icol habilat in southern Tasnania. The genus is distingushable by its direct development fusiun of presicral venehrac VII and VIII with the sacrum, dendate maxillary arch, absence of vomerine teeth and the presence of a columella. The speates is small imales $19-27$: females 25.30 mm S-V) with distinctive dark pallerns on the dorsum and an advertisentent eall that is a serici of "loks" with a pelse repetition rate of 5.3-6.1 pulses/s. Eggs are land in cavities in muss in groups of $9-14$ and flatch as four-legged, tailed froglets. B. nimbus gen. el sp- mov. is cryptozoic in vegetation at poorly drained sted sit wet peat. or in edaphic moss in implicate rainforest and subalpine moorland at attitudes from near sea level to $1,100 \mathrm{~m}$. The genus and species are endemic to Tasmania and bring the froge fauns of the shland to 11 species.

Key Worps: Anura. Bryobarraitua mimbus gen. el sp, noy, Tasmamia, new genus, new species, morphotogy usteology, adverisement call, development, habital. cryptoanc, distribution.

Introduction

The frog faunt of Tasmania is an element of the Bassian Province of south-eastern Australia (Lituejohro) \& Watson 1985). As well as species with wide ranging distributions throughout castetn Australit le.g.. Ranidella signifera Girard, 1858 and Limnodvnastes tasmaniensis Günther, 1858 |Leptodactylidaé: Myobatrachinae and Limnodynastinae]), there are Iwo endemic species, Lituria burrowsae (Seots. 1942) (Hylidae) and Ranidella tasmaniensis (Günther, 1864) (Leptodactylidae: Myobatrachinae).

Ten taxat are recognised in Tasmanas and aspects of their bislogy are relatively well knowh (Martin \& Littlejohn 1982). With a greater appreciation of the need to document the biodiversity of the continent, eflorts have been directed foward surveys and the mapping of distribution patterns of local faura. During one such project aimed at providing an atlas of the frugs of Tasmania. one of us (D.Z.) recalled having heard at several high altitude sites, a distinctive frog call that could not be attributed to any described Tasmanian baxon.

In late November 1992 calls were recorded at the Harla. Mountain National Park and specimens were collccted (Robertson 1993; Rounsevell \& Swain 1993)

[^0]Examination of the collection at the Tasimaman Museum and Ait Gallery. Hobart, revealed furiher material.

The frogs could not be referred to any known genus. and so a new genus is erecled to accommodate them here. We describe the species and provide information on its hiology and distribution.

Materials and Methods

Material reported bere is deposited in the Tasmanian Museum and Art Gallery, Hobart (TMAG), South Australian Museun. Adclaide (SAM), Museum of Victoria. Melbourne (NMV), the Australian Museum. Sylney (AM) and the Department of Zoology. University of Adelaide (UAZ).

Measurements were taken using dial calipers reading to 0.05 mih . or with an eye-piece micrometer Measurements (mm) were; eye diameler (E): eye-konaris distance ($\mathrm{E}-\mathrm{N}$): internarial span (IN) : snoul-vent length (S-V) and ribia length (TL); and for selected specimens, head length (HL) and head width (HW). The methods of measurement follow Tyler (1968) and interpretation of data follows Tyler (1978), Data are presented as means with ranges in parentheses. The tympana of many specimens are indistinct or noi visible, and hence accurate measurements of head width and head length were not always possible.

Osteological data were obtaned from specimens cleared and stained with alizarin Red S for bone after the methed of Davis \& Gore (1947), and with alizarin Red S for bone and aleian blue for cartilage afler the method of Dingerkus \& Uhler (1977). Osteulogical descriptions follow Trueb (1979), and Andersen (1978) for the carpus and tarsus.

Line drawingex were made with ithe aid of a Wild M8 stereosenpic dissecting microscope with athached camers lucida.

Most field observations were made in the spring and surmmer off 993 , at the type focality at Haru. Mountums National Park, and during a licld survey in October: and Nowember 1993 (Ziegeler 1994), Air temperalure and relative humidity were measured with a "Zeal" whirling psychrometor (BS 2842/66).

Recordings of the adverisement calls of une individual were nade with at Sony WM-Dt ProWalkman cassette tape rearder and a Beyer M-88 candiend dynamic microphone by CF. F Waison at the 1ype Iocality on 5 December 1992 at about -1330 hours E.S.T. The wet-hulb air temperature was $8.5^{\circ} \mathrm{C}$ and a dry-bult sir-temperature was $9,2^{\circ} \mathrm{C}$ in the viginity of the calling mate.

Recordinge of advertisement calls of several individuads alse wore made at the type loculty ty F. R. Brown on 30 November 1992 using \& Mafantz Superscope C-205 cassette recorder and a Senoheiser ME 80) elecirel mierophone: lemperatures were not measured

The calls were replayed on as Nakannichi Dragon casselte recorder; with the line nutput directed to as Kiay Eemetrics DSP-5500 digital Soma-Graph. Callx of suffictent intensity tbal did mol overlay those of neighbours were analysed. The number of pulses in at eall (determined ty inspection), and measurements of call duation tmst and pulse repelition rate fas pulveris; Ifom the peath of the firsi pulse to the peak of the last pulse) were determined fom the wave-fom display of each clear call.

For the six clear cealds ohtained by G. E Watson. dooninant frequencles $(\mathrm{H} z)$ were determined from the power spectrum for the complete cail. with the naximum and next highest peaks heing measured. Pulse duration, and attuch and decay times of the middle pulses also were estimated to the nearese millisecond (ms) from the wave-form displays, The repetition rate of the calls (as calls/min) alse was sefermined frum this sequence.

Eighteen calls from the recording sequence ohtained by P: B. Brown were analysed, and duration, number of pulses and pulse rate detenniged, As calls of several individuale are veluded, the values are treateat as-a group.

Systematic

Four anoman tamilies are native to Australia Hylidae Ranidue, Mierohylidac and Leptodactyldace (Myobratrichidaceof mathy athors). The new frog was

[^1]identified as belonging to the fanily Leptodactylidiac, sub-family Myobatrachinae, on the basis of: (1) terminal phalanges knobbed; (2) infercalary elements atsent: (3) apical element of M. intermandibularis ahsom; (4) peckoral girdle areiferal; (5) padatimes discrete: (6) prepharyfogeal fold absent: (7) alary processes of hyod plate moderately broad and winglike: (8) cricoid cartilage divided ventrally: (9) intervertebral discs not fused to centra in adults; (10) attachmont if M imermandibularis upon M. submentatis dbsent
The first ahree eharacters exclade the species from the Hylidae, and the fourth excludes it 1 rom the: Ramidac, whils the firsl. fourth, fifiband sixith exclude at from the Microhylidac. The remaming characters are defmitive of the leptodactyld suhbamily Myobatruchmae (Farker 1940); Lynch 197L: Tyler 1972; Davies 1987^{2}).

Littlejohn et at. (1493) report 4-12 genera as being variously recognised within the Myobatrachintee. The new species cannot be placed in any ot these genera on the basis of the following combination of characien: an apparent autapomorphy of the veriebral culumn of fuston of the presacral sertebisie VII and VIII with the sacrum, presence of a dentate maxillary arch, the lach of vomerine teeth, presence of a columelfa, and direct developtient of the young with it fonr-legged tailed froglet hatching from the egg membranes.
The frog is excluded specilically from the myobatrachine genera as follows: together with the vertebral fuston. (1) trom Assa by the absence of parental care hy the male, by the absence of vomerine tecth and by the compicie phalageal formula: (2) from Crinur (sensu Blake 1973) by the atsence of vomerine leeth and the absence of a free-swimming tadpole: (3) from Geffritua by the absence of vomerine teeth and of a projecting dorsal flange on the anterior ranus of the pterygoid, by the projecting snout and by the granular ventral surface: (4) from Runidelle by the witth of the bases of the alary processes of the hyoid. by the sbsence of froe-swinming tadpoles and by the nature of the imosternunl: (5) from Tandacty/us by the absence of T-shaped terminal phalanges on the digits. by the absence of vomerine teeth and by the lack ol free-Swimming tadpoles: (6) from Uperoleia by the absence of hypertrophied dertnal glands and of two raised compressed metatarsal tubercles, and hy the absence of a free-swimping ladpole. (7) from Psendophrave by the presence of a columeila and of teeth on the maxillary arch, and the absence of a lreeswhaming tadpole; (8) from Arenophrine by the presence of a columelia and of teeth on the maxillary arch, arid by the absence of modified phalangeal Enrmulac on the hands and feec; (4) from Myobarrwitus by the presence of teeth on the maxillary arch, by the alisence of a modilied phalangeal formula of the hands and by the absence of reinforcement of the anterion
purtion of the skull by anterior placement of the nasals. (10) from Metacrinia by the presence of teeth on the maxillary arch. by a large onosternum, by the lack of extensive reduction of the patatines laterally, by the less extensive nasals, and by the projecting snout and shape of the head.

Genus Bryobatrachus gen. now.

Type species: Bryobatrachus nimbus

Diagnostic definition

1. Alary processes of hyoid plate broad and winglike. 2, Cricoid cartilage divided ventrally 3, Intervertebral dises untused in adults. A. Altachment of M. intermandibularis on M. submentalis absod. 5 . Hypertrophicd dernal glands ahsent. 6. Small natlened inner metatarsal rubercle. 7. Tiny or no outer metatarsal tubercle. 8. Snoul projecting when viewed from above, 9. Maxillary arch toothed. 10. Vomers reduced to one or two fragments at edge of choanae. 11. Columella presem. 12. Palatines slightly reduced laterally. 13. Nasals not located anteriorly on skull. 14. Omosternum large, mushroom-shaped with narrow stalk. 15. Phalangeal formula of hand $2,2,3,3,16$. Phalangeal formula of foot $2,2,3,4,3,17$. Torminal phalanges knobbed. I8. Vertebrae VII and VIII lused with sacrum. 20. Development direet - lour-legged lailed froglet hatching from egg membranes.

Etymelogy

Derived from the Greek bryon ($=$ moss) and butrachos ($=$ frog), alluding to the hahit of breeding in moss or moss-like vegetation.

Bryobatrachus nimbus sp. nov.

FIGS 1-10
Holotype: TMAG C1O12, an adult male, $3(0) \mathrm{m}$ north of Lake Esperunce ($146^{\circ} 46^{\prime}$ E. $43^{\circ} 13^{\prime} 30^{\prime \prime}$ S), Harzz Mountains National Park, 920 m , collected by D. E. Rounsevell \& D. Ziegeler on 18.x. 1993.
Faratypes: 9 of $0,3 Q Q$ and 2 s.a : TMAG Cl009, or same data as holotype, except collected 1. x. 1993 : TMAG ClOIO, or. same data as holotype: TMAG C1013, s.a., Mt Sprent ($145^{\circ} 58^{\prime} \mathrm{E}, 42^{\circ} 47^{\prime} 30^{\prime \prime} \mathrm{S}$), coll. D. Ziegeler, 21.x.1993: TMAG C1O24, a, topotype, coll. P. B. Brown, 28:xii,1993; TMAG C1025. \& , same data C1024 and C1025 in amplexus; TMAG C350. ($20^{\circ} 0^{\circ}$), Mi La Perouse Base Camip. ANZSES Expedition Jan. 1984: TMAG C345. s.a., same data as C350; TMAG C869, ot. Mi La Perouse ($146^{\circ} 44^{\prime} 30^{\prime \prime} \mathrm{E}, 43^{\circ} 30^{\prime} 20^{\prime \prime} \mathrm{S}$), tocks abowe Pigsty Ponds on Mi La Perouse Irack, 1.7 km NW of summit, coll. M. N. Hutchinson \& S. Hudson, 9.jii.1990: SAM R43671 (cleared and stamed), α : same locality as holotype, coll. D. E. Rounsevell. 25.xi.1992; SAM R43672, of, same data: AM R143566 (cleared and stained), O, same locality as holotype, coll. D. E. Rounsevell, $25 \times$ xi.1992: AM R143565, or same
locality as holotype, coll. P. B. Brown \& D. Ziegeler. 29.xi.1992: NMV D67310. or, same locality as holotype. coll, A. \& J. E. Wapstra, 29 . xi. 1992.

Defintion

A stmall species (males $19-27 \mathrm{~mm}$ S-V. females $25-30 \mathrm{~mm}$ S-V) characterised by a toothed maxillary arch, presence of a columefla, lack of vomerine teeth. unmodified phalangeal formulac, knobbed terminal phalanges, widely exposed frontoparietal forlanelle. presacral vertebrac VII and VIII fused with the sacnum. unfringed fingers and twes. granular ventral surface. dorsume consisently marked with dark chevron-shaped mark between eyes, pair of parallel dark lines Jrom shoulder along anterior portion of hack und pair of dark patehes in enceygeal cegion, eggs large and unpigmented. Four-legged tailed froglet hatches from egg membranes, advertixement call a series of "toks" with a pulse repetition rate of 5.3 .6 .1 pulses/s.

Descripion of holotype

Maxillary teeth presens: vomerine leeth absent. tongue oval, free behind; tympanuon obscure. Snout shori, projecting and slightly truncated when viewed from above, overshot and sloping posteriorly when viewed in profile (Fig. IA). Eye lo naris distance lesa

Fig. 1. Bryeboiruchues nimbies gen et sp. nôv: A. Aateral view of the head, B. palmar vies of hand; and C. plantar view of font (Holotype. TMAG 1012). Scate bar - 5 mm .
than internarist span ($\mathrm{E}-\mathrm{N} / \mathrm{IN}=0.71$). Nares located laterally on snout, dicected dorsally. Canthus rostralis stratghs, loreal region concave. fireial shelf conspicusus. Eye promineitt. pupil horizontal when constricted. Fingers short, unwebhed with flattened subarticular tubercles. (Fig, IB), Terminal dises undilated. Palmar lubercles flattened but comspicuous. Several supernumerary lubereles present; tingers in order of length $3>4>2>1$.

Hindlimbs shori (TL/S.V 0.36). Toes relatively short, unfringed and unwebbed (Fig. IC); in order of length $4>3>5>2>1$. Small flatencd inner metatarsal tuberele, and riny rounded outer metatarsal tuberele. Subarticular lubercles small and not prominent.

Dorsal surface sparsely lubercular, tubercles linear along length. Prominent tubereles on dorsal surface of legs. Ventral surfitec granular with well-developed

B

Fig. 2. Brvebatrachus nimbus gen et sp. nôv A dorsolateral and B. ventral views in life (Paratype TMAG 10609) (Photo. 1. Voss)
coarsely granular pelvic patch. Small bifurcated unfimbriated cloacal flap.

Dorsum dark tat in preservative with chevronshaped black mark hetween eyes. parred clongated black markings from seapula region, and paired moderately elongate black patches in the coccygeal region. Canthal stripe anterior to maris, through loreal region and eye fo axilla. Pale patch beneath eye (Figs 1, 2).

Veniral coloration chocolate with cream speckling (Fig. 2); dark chocolate suffusion on throat. Paired vocal stits posteriorly al angle of jaw:

Colour in life

Dorsal surface shades of dark brown. Darkesi brown markings distinetuve varying io intensity and occurring bilaterally in paurs in the coccygeal region and in association with scapulae. Coccygeal pair lie within region of paler brown or "ground" colour, not hidden when colour intensity changes. Larger patch of Jark brown oceurs between scapulae and anteromedially which, when at darkest, can conceal upper pair of bilateral markings. Chevron-shaped mark of dark colour between cyes. Small white patch above closesa. Limbs barred with dark brown. Other broad dark brown patches occur along paler brown flanks. Dersal surfice of snout and inner thighs ummarked and paler brown or "ground" colour. Paired eanthal stripes from taris to tlank broadest in tympanal region. Dark brown canthal stripe passes through most of the eye except uppermoss part of iris. Iris dark brown below and iridescent gold above facial stripe. Lower stripe of white or crean. commencing between eye and naris and varying in width being narrowest, or with lower edge notched. below eye and including neither lowet cyefid nor upper lip. Ventral surface dark brown covered with irregularly-shaped fine white spots of similar size extending over the limbs and sometimes 10 lower throat. Chin sometimes paler and less spotted. Palc lemon-yellow tint on paler parts of throat and forelimbs.

Dimensions (mm); S-V 22.6; TL 8.2; E-N 1.7; IN 1.4. E 27.

Variation

There is little variation in external morphology, other than colour pattern. The protruding soout is not as pronounced in all paratypes; in those in which it is most developed. it appears to be thickened and whitish. The legs are uniformly short (TL/S-V $=0.35$ [0.31-0.38]), and the head usually fonger than width ($\mathrm{HL} \cdot \mathrm{HW}=1.06 \quad[0.96-1.23, \mathrm{n}=9]$). There is variability in the relationship between eyc-to-naris distance and internarial span ($\mathrm{E}-\mathrm{N} / \mathrm{IN}=0.89$ (0.71-1.121). The tympamum is obscure or indistifict
(Figs 1, 2). Jies are uniformly unfringed, but there is variability in development of the palmar tubercles: in TMAG C1009. these are particularly promounced. When present, the rouler metalarsal lubercle is tiny and the inner metatarsal tubercle usually latiened. A tarsal fold is present in TMAG Cl010. Rugosity of the dorsum varies but is not conspicuous. Ventral granularity of the belly is variables

The ground colour of the dorsum and the extent and nature of the markings varies. The three pairs of dark markings on the dorsum are consistently present. The markings between the eyes are chevron-shaped, whilst those in the scapular region are otten lyrate and can vary in length, occasionally alminst coalescing wilh the eoceygeal pair.

Dorsal colour varies from very dark brown to greybrown or tan, and, in darker specimens the anterior pair of markings becomes obscure and often nierges with the suprascapular pair. The coccygeal pair always contrasts with the general body colour and is distinctive (Fig. 2A).

A pale or tan mid-vertebral stripe is present in several specimens, and occasionally a pale medial ventral stripe is present in paler specimens. The ventral surface can be dusky grey with white spots, or pale with dark spots. The throat is always pigmented. but added dark suffusions are present in calling males. The throat has a salmon iridescent hue in life, and a lemon coloration often oecurs in the axillae Redish patches occur almg the lower tlanks and in the inguinal region. A pale spot ofien uceurs above the cloaca.

The pale stripe beneath the dark canthal siripe of the head varies in extent, maximal development being shown in Fig. 2.

Osteology (based un SAM R4367I)
Skali poorly ossified. Sphenethunoid ussified medially. with ossification extending anteriorly between the nasals dorsally and venirally. Cartilages of nasal capsules are considerahly calcified veotrally (Fig, 3). Prootic at) exoccipital saperficially fused by extensive calcificalion givine sbort and stocky crista parotica. Exoccipual calcified dorsomedially and ventromedially. Crista parotica not ariiculating with elongate unexpanded otic ramus of squamosal. Carotid canal roofed on trontoparietals medial to well developed epiotic eminerices. Occipital condyles widely separated. Frontoparietal fontanelle widely exposed for approximate lengith of orbit. Anterios exiremities of frontoparietals extẹnd anteriorly to anterior margin of frontoparietal fontancile. Orbital edges of frontoparietals slightly curved and angled slightly posterolaterally Nasals moderately well ossified, approximately triangular and widely separated medially. Maxillary process shorl, and wadefy separated from well-developed preorbital process of pars facjalis of maxilla.

Palatines moderatcly tobust, reduced slightly laterally and curving posteromedially to overlic sphenethmoid at anterior extremities of orbit Parasphenoid moderately robust with moderately broad, deeply erenate cultriform process extending approximately $2 / 3$ length of orbil in ventral view. Alate moderately shon, relatively broad. extending slightly posterolaterally, not overlain by medial camus of plerygoid. Pterygoid robust; anterior ramus in long contact with maxifla anteriorly, and with base of squamosal shaft and with cartilaginous quadrate posteriorly: Squamosil robust. with short zygomatic

Pig. 3. Brophatrachus nimbus gen. et sp. nev. A. devesil and B veniral viewn of the shuil of SAM R4367i. Scale bar $=5 \mathrm{~mm}$
ramus and long unexpanded ouic ramus not owerlying crista parotica (Fig. 3).

Maxilla and premaxilla dentate: Palatat shelf deep with well-developed palatine processes of premaxillae not abutting medially. Well-developed pterygoid proeess of masilla. Alary processes of premaxillau broad at hase with narrower posterodorsal projections. slightly concave. Vomerine fragments present on edge of choanae on right hand side. Bony eolumella present (Fig. 3)

Pectoral girdle arciferal and robust (Fig, 4A), Omosternum large. inushroom shaped wilt an elongate narrow stalk; xiphisternum also large and mushroom shaped, with a short broad stalk. Some calcification of xiphisternum and epicoracoid cartilages. Sternum eartilaginous. Clavicles moderately slender, curved, poorly separated medially: enracoids robust, moderately widely separated medially. Scapuls bieapitate, longer than clavicles. Suprascapula about 1/s ossified.

Eight nor-imbricate prococlous presaeral vertehrae. Vertebra VIII fused with sacrum and with vertebre VII. Vertetra VII fused with vertebra VIII and with sacrum (Fig. 5). Transverse processes of vertcbra IV with bilateral anomally (Fug. 5). Sacral dapophyses poorly expanded Relative widths of transyerse processes:

$$
\mathrm{III}>\mathrm{IV}>\mathrm{II}>\mathrm{SD}>\mathrm{V}>\mathrm{VI}>\mathrm{VII}>\mathrm{VIII}
$$

Urostyle bicondylar with dorsal erest extending approx. $1 / 2$ length. Small rounded dorsal prominence on ilium (Fig. 5). Dorsal protuberance not prominent. Itial crest absent. Pubis calcified.
Humerus with stromgly-developed deltoid crest anteroproximatly. Phalangeal formula of hand $2,2,3,3$. Carpus of six elenents exhibiting moderate torsion. O. radiale and O. ulnare present: O , radiale larger of the two. Both vements arficulate with O . radioulna proximally and with each other posteromedially. Distally, both arriculate with Jarge iransversely elongated O. eentrale postaxiale which articulates distally with buses of O. metacarpi III. IV und V. Moderately well-developed flange extends from tateroproximal corner. Small calcified palinar sesamoid proximafly on ventral surface (Fing 6) O. centrate preaxale arliculaies laterally with O radiale, distally with O. centrate postaxiale and with carpal element of 0 . distale carpale 2 and O , distale carpale 3 and laterally with basal prepollical element.

Carpal element of O. distale carpale 2 articulates with carpal element of O . distale carpate 3. Distal tips of terminal phalanges knobbed.

Phalangeal formula of foot $2,2,3,4,3$. O, bibiale and Q. Tibulare elongate and fused at either end. Bones in approximately equal length. Two distal tarsal elements present. Lateral elenrents largest, lying at base of O . metatarsus III and extending laterally to articulate with
medioproximal side of basc of O. metatarsus II. Second element appears to be result of fusion of two elements and lies at base and slightly lateral to O metatarsus IL. and ariculates with base of O. metatarsus 1 and 0 centrale prehallucis. Dissal prehallical element small and knobbed, calcilied.

Hymid plate longer than broad (Fig, 4C). Base of alury processes occupying $1 / 3$ to $1 / 2$ of lateral edges of hyoid plate; not pedunculate. Anteromedial processes of anterior hyale long and slender. Posterolateral processex of hyoid plate irrcgularly shaped, moderately long. Posterior cornuat ussified.

B

Fig, 4, Broboutrachus nimbus gen, et 5p, noy. A A domal view of the pectoral girdle: B lateral view of the iliuns. C. ventral vew of the hyoid (SAM R43671). Scale bars $=1 \mathrm{~mm}$.

A

Fig. 5. Bryobatrachus nimbus gen. et sp. nov.: A. dorsal view of the vertebral column B. ventral view of vertebrae V1, VII and VIII and the sacrum (AM R143566) and C. ventral view of the vertebral column (SAM R43671). Scale bar $=5 \mathrm{~mm}$.

Fig. 6. Bryobatrachus nimbus gen. et sp. nov.: A. dorsal and B. ventral views of the carpus (SAM R43671). Scale bar $=5 \mathrm{~mm}$.

Variation

Paratype (AM R143566) has been cleared and stained. In comparing this specimen with the described male, it is apparent that the latter is probably a senescent specimen on the basis of the high degree of calcification lacking in the larger female specimen. For example, calcification of the nasal cartilages, of the omosternum, xiphisternum and epicoracoid cartilages, of the tiny cartilaginous prepollex and the palmar sesamoid is lacking in this specimen. In addition, there is less calcification of the crista parotica region between the exoccipitals and prootics.

Consistent with this view is the lack of ossification of the sphenethmoid between the nasals dorsally and ventrally, and the lack of fusion of the medial tarsal elements. Remnant vomerine fragments occur on the edges of both choanae in this specimen. The vertebral anomaly on the transverse processes of presacral vertebrae IV is not present, but fusion of presacral vertebrae VII and VIII with the sacrum is consistently present (Fig. 5).

There is little variability in other skeletal elements, other than in the palatal shelf of the premaxilla which is much more extensive in its articulation with the palatal shelf of the maxilla.

Advertisement call

Males call from the ground surface beneath dense vegetation, and from prepared breeding chambers within cushions of sphagnum or edaphic lichen. Male advertisement calls are heard in loud chorus, diuenally. in spring and carly summer.

The following description of the advertisement call (Fig, 7) is based on the sequence recorded by G. F. Watson. The call is a single quasi-periodic pulse train with a duration of $1009-1281 \mathrm{~ms}$ (mean $=1157$), and eonsists of a series of $7-8$ (mean $=7.5$) short pulses (duration; range $=7.2-10.4 \mathrm{~ms} ;$ mean $=8.74 \mathrm{~ms}$) with rise times (attack) of about $1.0-3.5 \mathrm{~ms}$ and fall times (decay) of about $4.9-5.9 \mathrm{~ms}$. The pulse rates range from 5.3 to 6.1 pulses $/ \mathrm{s}($ mean $=5.74)($ Table 1$)$. The calls are repeated at a rate of $2.65 \mathrm{calls} / \mathrm{min}$. Although there is a wide spread of speciral energy (as a consequence of the short rise-times of the pulses), there are two dominant frequencies of equal energy at 2100-2140 and 2680 Hz in three of the calls, there is only one peak at 2140 Hz in two calls, and in the remaining call there are two peaks at 2120 and 2740 Hz (with the latter being lower by 2 dB).

The values obtained from each of the 18 calls recorded by P. B. Brown are presented in the recording sequence in Table 2. From an inspection of the numbers of pulses and dominant frequencies, it is suggested that calls of three or four individuals may be included in the sequence. The values for call duration, number of pulses and pulse rates, although of greater range, include those of the individual recorded by G. F. Watson. The dominant frequencies, where measured, however, are lower, ranging from 1540 to 1960 Hz .

Calling periond

The calling period in alpine habitat is seasonal, Calls in chorus were heard at the type locality from carly October to late December. Earliest calling heard was in the Hartz Mts on 1.x.1993, and the latest at Mt Norold ($146^{\circ} 15^{\prime} 40^{\prime \prime} \mathrm{E}, 43^{\circ} 15^{\prime} 30^{\prime \prime} \mathrm{S}$), on 2.iii. 1994. Chorusing occurred in rain and whilst snow fell.
In early spring, calling was interrupted frequently hy heavy snow falls, and recommenced when thaw set in. During summer, calls ceased during the warmest part of the day at temperatures above $15^{\circ} \mathrm{C}$ and as the

Fig. T. A wave form display of an advertisement call of a male of Bryobarrachus nimbus, gen. et sp nov. recorded at a wet hulb air temperature of $8.5^{\circ} \mathrm{C}$, in the Hartz Mountains. The depicted call is the first of the serief recorded by G. E: Watson. (See Table I for more information.)

T'ablas 1. Values for sin advertivemem calls of a male of Brysbatrachus nimbus gen. et sp nov an the type locality at a wet-bulh air temperature of $8.5^{\circ} \mathrm{C}$ on $5 . x i i \mathrm{i} .1992$.

TABLE 2, Values for 18 aderrtisement calls of several mafes of Bryobatrachus nimbus gen, ef sp. nov, reconled by P. B. Bmos at the sype lenality on 30 si. 1992.

$\begin{aligned} & \text { Call } \\ & \text { (ms) } \end{aligned}$	Duration	Pulses	Pulse rate (pulses/s)	Dominent frequency (H 2)
1	1681	8	420	
2	925	7	6.58	1740
3	1869	10	4.87	1720^{+}
4	2069	10	4.39	1540 4*
5	1919	10	4.74	1540 **
6	2637	10	4.46	-
7	1756	10	5.20	-
8	1356	7	4.46	1800
9	634	5	6.53	1800
11	1169	7	5.19	$1960{ }^{-}$
11	698	5	5.93	1800
12	884	4	3.44	1800
13	2225	10	4.69	1620
14	2296	11	4.47	1620
15	2144	10	4.24	1600
16	2100	10	4.33	1600
17	1712	11.	5.34	1806
18	2394	11	4.21	1600

* mudpoint of band; ** second peak at 1820 Hz .
vegetation dried out Individaals called in cool conditions during the early morning and in the evening (19:00-21:00) at Mt La Perouse on 1-ii. 1994 (S. Corbett pers. comm.). Frogs were not heard at night

Ziegeler (1994) observed calling in air temperatures of $4.5-12{ }^{\circ} \mathrm{C}$ and relative humidities of $62-94 \%$. The frequency of calls beard increased when there was precipitafion.

Behaviour

The species is cryptozoic, and was collected during spring and summer. Calling nales were collected from the surface of the peat beneath coarse, Jow vegetation. from within breeding chambers or nests. in cushions of sphagnum or other similar plants, beneath roeks (Ziegeler 1994), or under branches lying on or amongst vegetation. Females were found in breeding chambers with a male or. when males were chorusing in spring, on the surface of the vegetation. Males continued to call even when females occupied the same chamber.

At the rype locality where a large population exists. individual frogs are regularly spaced, renmining hidden. They appear not to aggregate or to use open

Fig 8. A. Nest of Bryohutruchus nimbus gen. et sp. wov.; B. xubalpine nooorland habitat at Hartz Mts; type locality in middle distance viewed from the track. (Photo. J, E. \& A, Wapstra); C. subalpine moorland habital al $800-1000 \mathrm{~m}$ altitude at Mi Hesperus; D. Implicate rainforest habitat at over 750 m altitade at Mr Bobs.

Fig, 9, Brwiteltuchus nimbus gen, el sp, now: A sursal siew of egrs: B. dorsal view of embryo at slage 5 (Townsend \& Stewari 1985); C. depal view of froglers.
surface water. None was collected during autumn or winter:
Locomotion is by crawling or walking. In tbe open, frogs usually crouched and remained still until disturbed and then sought cover. They jumped or swam only whet forced. In captivity. both sexes displayed thigmotropism by forming individual cavities in which to shelter in loose sphagnum. They entered the sphagnum backwards.

Developmetr

The species breeds in spring, laying eggs in nects in moss or lichen. Nests are concealed spherical Lavities ($3.5-4.0 \mathrm{~cm}$ in diameter) in clumps of moss approximately $2-5 \mathrm{~cm}$ below the surlace (Fig. 8A) They can be exposed by parting the stems of moss. Single males, mate-fomale pairs (sometimes in \& - mplexus), eggs, or froglets were found in ten nests in a small area of the iype locality on three visits (24.xii. 1993 , II.i. 1994 and 28 ii.1994). On the first visit, five nests were found. One contained $6-10$ eggs, another contained five froglets (Fig. 9C), the third held a single male frog, and the remaining two nests each held a male-fenale pair of adult frogs (one pair included a gravid female and a male in amplexus). On the second visit three nests containing eggs were found. Two contained 12 and 14 eggs. Those in the remaining nest could not be readily counted as the jelly surrounding: Ihem had begun to merge. The last visit produced iwo new nests. one containing 9 eggs. and another containing 5-6 froglets. Each nest was found in a scparate cushion of moss. Other empty and possibly disused nests were found in adjacent patches of moss in the same area.

Eggs containing embryos (Fig. 9B) at stage 5 of Townsend \& Stewart (1985) were located on 10. xii. 93 but not in nests. Two groups of eggs were found on the surface of the vegetation and contaned three and six eggs respectively. The latter included four dead embryos infected with fungus.

The mean diameter of fous of the newly laid eggs Found on II, i. 94 was $3.49 \mathrm{~mm}(3.33-3,65)$, and the mean capsule diameter was 13.57 mm (13.02-14.13). They were surrounded by a single jelly membrane (Fig. 91) These eggs cannot be ascribed to a stage as for the direct doveloping Eleutherodactylus coqui (Townsend \& Stewart 198,5)

The mean S-V length of five melamorphs was 6.0 mm (5.4-6.35) and the mean total length, 14.51 mm (13.97-19.05), Tail length varied considerably (Fig. 9C). Tail muscle is well developed and, tail fins narrow, equal in width dorsally and ventrally. Tail fins do not appear to be vasculanised. The body is heavily pigmented; that on tail muscle being finer and that on tail fins patchy. In life the body and tail are covered with fine white dots. There is no cloacal tail pieces. The mouth exiends beyond the eye and the fingers and toes appear to be fringed.

Habitar

Brvehatrachus nimbus is lound in subalpone moorland (Fig. 8C) and implicate raintorest in southem Tasmania (Fig. 8D). It is restricted to poorly-drained sires from lowland to subalpine localities IZiegeler 1994). The soil type is peat overlying sandy or stony substrate (Ziegeler 1994). It oecurs on Pre-Cambrian metamorphics. Upper Carbonilčrous-Permian sedimentary deposits. Triassic sandstone and Pleisticene glacial deposils.
The subatpine noorland comprises a diverse range of plant communities: Five recorded communities are Fparris serpilifotia-Empodisma minus-Gleichenaia alpinne fernfand. Leptospermum nitidum-Guhnia grandis-E. minas tall shrubland Theth occur at Hartz Mts (Fig. 8B|). E. serpilijolia-Ruchea scoparia low shrubland with Astelin alpina, G. alpina and E. mimes (Adamsons Peak $146^{\circ} 49^{\prime} \mathrm{E}, 43^{\circ} 21^{\prime}$ 'SI), E serpilifoliaMelateuca squamea open heath (Mt Sprent) and Curphay alpina-Isophysis tasmanica herbfield (M1 Sprent. Mt Hesperus [$146^{\circ} 4^{\circ}$ E, $4^{\circ} 07^{\prime} 20^{\prime \prime}$ S] [Fig. 8CJ) (Ziegeler 1994).

The implicate rainforest communities are floristically complex. The shrub layers are dense and species diverse at all altitudes. At higher altiludes the dommant trees are Nothofagus cunninghamic. Encryphïa milliganif. Allimotaxis seluginoides, Nothufagas gumni and I hylloclustus usplenifelius and the ground cover is dense moss and/or Astclia alpina (Fig. 8D. 750) m. Mt Bebs $146^{\circ} 36^{\prime} \mathrm{E}, 43^{\circ} 18^{\prime} \mathrm{S}$. At low altitudes N cunninghamii, Melaleuica squarrosa and P asplenifolius are dominant and groond cover is dense moss and Blechnum wotrsif (Alexander Creek $146^{\circ} 05^{\prime} \mathrm{E} .3^{\circ} 26^{\prime}$ S) (Zieqeler 1994).
The climate is in the perhumid cool zone of Gentilli (1972) but is cool and consistently wet. The mean annual precipitation is 2500 mm in large parts of this region and is received as rain. snow, hail, fog, mist and frost evenly distributed across the seasons (Bureau of Meteofology 1991),

Distriburion und abundance

Bryohatrachus nimbus occurs in mountains in soulhern Tasmania soulh of $42^{\circ} 48^{\circ}$ batitule (Fig, (0). 11 is known from 15 localities. mostly described by Ziegeler (1994): that range from sea level to 500 m in an area approximately $80 \mathrm{~km} \times 50 \mathrm{~km}$. The localities are bounded by Mt Sprent in the north-west. Hartz Mis in the north-east, M1 La Peronse in the south-east and Bathurst Harbour area in the south-west (Fig. 10). All localities ate south of the Huon River and Serpentine River and none is over 40 km from the sea. At the northern and eastern edges of this distribution, B. nimbus is confined to sites above 800 m altitude whilst in the south-west, its range descends to near sea levet.

Hundreds of males were heard in chorus at the type Tocality during spring 1992, Other large populations oceur at known locations (Ziegeler 1994). Although geographically restricted, the xpecies is abundant within avaifable habita, and calling males were estimated in occur at densities of $0.1-1.0 / \mathrm{m}^{-2}$.
Searches conducted further norih at Philps Peak. Tyndall Range, Mi Field, Mt Anne. Mi Weld and Mt Piclon tailed to locate the species despite the presence of suitable habitat and weather conditions (Ziegeler 1944).

Comservatien stalus

The species is secure. All locations where it has been recorded are in reserves. as is most of the suitabic known habitat. It hatitat shows evidence of no fire or only very fow Trequencies of fire.

Erymology

From the Latin nimbus (= rain cloud), with reference to the habitat of the species.

Commun name

The name "moss froglet" has been coned and used for this species (Ziegeler 1994).

Fig. I0. Disitibution ol Ervobar ruchus nimbus getn. et sp- now. in southern Tismania, A. Southeastern Australia, and B. foralised destibutson in Tasmania. Closed atreles ane localincs firm which specimens have been collected: mpen (numbered) circles are call records.

Compurison woth other specties

Bryobdatachow mimbur is distingushed from other myobaifachine frogs in Tasmania in the following ways. The species is not associated with bodies of open surface water It is most likely to be confused with sympatric Ranidella tasmuniensis from which it cato be distinguished by relatively-shorf, unfringed toes and by the lack of brilhant carmine patches usually present on the flanks and the concealed surface of the thighs. The call of R, tasmaniensis is a quavering bbleat: slowly and irregularly repeated (Litllejohn 1970) and its mierotrabitat includes vegetation on the margins of open and running water. R. signifera has relarively long- fringed toes and is found in the vegetation on The margins of permanent or temporary water bodies. The call is a series of short rapidiy-repeated notes: "erick eriek eriek erick" (Martin \& Littlejohn 1982) Georrinia lacvis has a ruunded soout with is surioth ventral skin which is usually boldly marbled with dark brown markings. The species is found in dra selerophyll (open) forests at low altifudes (Martin \& Lititejohn 1982). These authors describe tue call as a harsh grating "cra-j-a-b-ack cra-i-a-a-ack, crack, crack. crack". The other myobatrachine species in Tasmatnia is Pseudsphrone semimarmorala which has a smooth veniral surlace strongly marbled in hlack and whits. The head is rounded and the undensurface of the thighs are bright yellowish orange to orange in life: the catl is a short, barsh "creek" repeated slowly and irregularly (Marlin \& Littlejohn 1982),

Comparative mutrial examined

Aremophryne motudel: UAZ B531, B541, B762, A579 81. A760)-1. Assa darlingloni: UAZ A133, Crinuer geongiana: LUZ B754. AI3406. Gezcrivia Laevis: SAM R4260B. R8982A.E. G. Ieai: SAM R5787A. G. istoriana: SAM R9425 (2). Myohatrachus gondeli: UAZ B491, B534-5, B757. A759. Partucrima tusne/li. UAZ B750. Runitella bilingua: UAZ B1927, B1935. R. deserticola: UAZ B1930-31. R. glauerri: UAZ AF91, R. insigniferu: UAZ A192. A195, B929. R. parinsignifera: UAZ A185, B1932-33. R. remota: UAZ. B1928-9. R. riparia: UAZ. A184. Al89. A198. R. sighifera: UAZ A193, A197, B898-928 R subinsignifera: UAZ A190, R. tammunionsis: UAZ A186. Pseudoplorve semimarmorata: UNZ B636 P hibromi: UAZ A577. A172. B532, B540. P. coltacea. LAZ A200. B537. B764. P guentheri: UAZ A194, B539, B765. P. accidentalis: SAM R17522. Tindiactylus asutirostris: UAZ B759. N205-6. T: eungellensis: UAZ A392, T: merphiles: UAZ A775-6, B752, Epervieut ultissimu: SAM R\&0146. U, urenicelet. SAM R17347. U. aspera: UAZ AS72-X. U. boreatis: UAZ A863. B862. A226. U. capinulata: SAM R29586. U. crasse: UAZ A869-70. B871, B483, B486. U. fuscu. SAM R29603. K29606-7. U glandutesa: SAM R27082. U. iumadata: UA7. A818-826, B397, B479. 1).
laevigata: UAZ 4601, B817. U litkonoda: UAL A767-8, B896, B812, A799-806, O, littlejohni: UAZ A1712. A1717. B1713-1716. U manim: NMV D23636 U. micmmeles: UAZ Al722. U mimula SAM R29642-3, R29645-6, U. mpobergi. UAZ A582, A880-9. U. rugnsa, UAZ 1012, A1913, A816, B814- U. talpa: UAZ $\triangle 591-4864$. U, rachaderma UAZ A621, A892-4, A545-6. U. tyleri: NMV D23634. SAM R29659. R29652.

Discussion

Bryohutruckus nimbns exhibits a number of unusual features in its morphology and reproductive biology, Many of the characters contributing to the recognition of the genus and species are influenced by heierochrony in other myobairachine genera (Davies 1989). The presence of teeth on the niaxillary arch, reduction of the vomers and whsence of vomerine teeth, presences of a columeita and roduction of the patatines, daterally, are all presumed labile teatures that vars intragenotically in e.g. Uperoleia and Crinia isensus Heyer at al 1982). However, notie of these featares either singly or in combunation is definitive of Briobaracitus. All are coupled wath the unusual leature of fusion of the posterior portion of the vertebral column with the sacrum.

Vertcbral fusions tend to he in an interior/posterior sequence (Trueb 1973), and fusions of prestacrals VII and VIII with the sacrum are unusual. The nature of the fusion cannot be described as a presacral shield, as known in a few laxat including Brachyeephutiov epsiphiam (Brachycephalidae), and thought to be protective on the basis of lerrestrialism exfibited by such laxis (Trueb 1973).

Fusions aperoaching that sbown by B. mmbus have been recorded in the BuFonidat (e, 2 , Didynumipus, see Gjandison 1981), if Dendrobates (Trueb 1973), and in the Pipidae; allhough the fusions reported in Psendhymemochirus and Homenckirus by Catuatelai \& Trueb (1988) are inferred. and not idemufied by femsamt vertebrac or recorded spinal fortmina, vertehral fusion in Pipa meersi more closely approximates that in Didynampis (Truch 1984). Nons of these famplies is native of Australia,

Although onnturming to the myobatrachine patterm. the width of the junction of the alary processes with the hyoid plare is not as broad as it most other genera and approaches that shown by the enigmatic genus Rheobatrachus (Davies \& Burtion 1982; Mahony etal) 1984), the subfantial placement of which renlantio contentious iTyler 1989. Lithlegohn el al, 199.3).
Terrestrial egg deposibion and direct developinent have evolved a number of tintes in Austrafian frogs (Martin 1967). Reproductive modes include inmplete intracapsulat developnent re.g in the mictohylids Sphonophrywe and Cophivalus), through hatching at
a relatively late sage in orlogeny (c.g. the myobatrachume Pseadophrve) to non-swimming, non feeding larvac that are subject to braarte formes of parental care (c,g the myobatracbine Akva and the theshatrachine Rheobatrachus). All of these gradations of direct development are found within the Myobairachonas, and reproductive mode can somelomés yaty insragenericatly. In Paeudephotes, P. douglasi differs from congeners in laying cggx in water and thus fot relying upen floosding of nests to intiate hatching of Lavae at Jater stages (Main 1964: Bradford \& Seymour 1985), whils in (ievcriniot, G. roseta and G. Inea do not have free-kwiniming larval slages (Main et al. 1954: Mam 1963).

Totracapsulat developpient is known for the monorypic genera Myoloutrachus and Arenoplarine (Raberts 1981. 1984). and is inferred fir Metarrinia (Masin et al. 1959). The larvace of Geocrinta rosed are inactive in broken-down egg capsules which fill shallow depressoos in damp soil or in the totten centres of hollow logs (Main et al 1959), 1arval life al G. Iutea rescmbles that of G. rosea (Man (V) 3). Such barvie are highly modified, having no muth disc; a large yolk sice, and an dongate tail (Watson \& Martin 1973). The stucture of the tail regoned for G_{i} rosed is similat io that shserved in R. nimhus frogetets.

Nlihough aetaik of the life history of B. nimbur have not yet been described, our limited data indicate that development is iniracapsular until the final stage of of metamorphosis. and that the frogkets stay in the nest with the broken down egg capsules until the tail is fully resorbed and metamorphic climax is reached.

The diamelers of the eggs al 3.33 .7 mm are smaller than wattian diameters fecorded for Atenuphrsine monnda and egg diameters in Mwhatrachnas souldii Koberts 1981, 1984) , but within the range recorded For Pseudophrane spp, and fier (evorriniz viatoriana and G. luevis isee Tylor 1989 for compilation of data). All of these species exhbit forms of diree development Capsule dianeter is particularly latge. being almost double that recorded in the field for Moohairuchus goufdii, and 1.5 times that of eggsbydrated in the labonatory (Roberes 198!) Clutelr size cimpares closely with thuse or other direct-developinge species (Tyler 1989).

Four other Tasmanlan species (Randella signifera. R. Jasmaniensis, Gencriniar lacvis. Pseudophryne semimamoraua) have advertisemen calls composed of trains of pulses. The sborn pulse traits of B nimbus are similat to those of R. vignilerte. but the call repesition rates and pulse repectioion rates and dominant frequencies are higher in this latter specjes (Littlejohn 1964, 1970). The call of K. tasmamiensis is note complex, beine composed of a group of pulse trains. of notes. of high and regular pulse rates (itttejohn 1970). so that it has a heating quality. The call of G. luevis esmasis of at seties of pulse rams in which the
pulse intervals decrease through each note (1, itllejphin \& Martin 1964; Hatrisun \& Litticjohn 1985). The call of P semimamonata consiste of a single complex pulse trath. usualify with biphasic structure (McDonnell et al. 1978). Hence, the atverlisement call of B. numbus is sulfietently unlike those of all orther species of anuran occurring in Tasmania to be a reliable mdicator fort acentificatoon. Possibty, the most similar advertisemene call of a southern myobatrachid to that of B. nimbus is that of Ramidella glauctio of south-western Wextern Australia, which consixts of a slow pulse tram and very short pulse durations Dirtlejobn 1959, K961; M. i. Liblejohn \& P. G. Litllejolon unpubl.).

Bryoharructus nimbus is must similat in excernal morphology and cranial osteology for Ranidella lusmamiensis (Davies anpabi.) if its teptoductive biology to Gencrinia rosest and G. lutea, and in the structure of the hyoid to Rheobbatractius. It is not pexsible, therefore, to identify the sister taxan to the genus on the basis of the phenetic comparison presenied here. Such an ibentitication musc awain at detailed anatysis of. at least. the subfamily Myobatrachinas, ifforposrating all available data.
B. nimbur appears to be contined to southern Tasmania despite the presence of apparenily suitable habinat in highlands beyond. It has been sought north of the Serpentane and Huon River systens wathout suecess. The distribution might be explained by the exeent of Pleistocenc glaciation in the centrat hightands of the island, and the severity of the cold. dry climate in ice free areas (Galloway 1986) making the central highlands unsuitable for if in the past. coupled with a lack of northwand dispersal since,
The region currently occupied by the species has a comtinually wet equatable climate produced by year round high rainfiall within the perhumid cool climati zone (Cientlit 1972). All lesalities are less than 40 km from the sea, and are subject to coastal climatie induences, particulatly inereased procipatation from orographic interaction with moist prevailing west in south west winds. 'The direct development of the juventie stages requires at elimate free from the exiremes of desiccation. It is most anlikely that the known habitat types eould support the species until a very long zime after a wildfire (Brown \& Podger 1982) Br nimbus can be regarded ss belouging to tire intolerant communitics, and the occurrence of fire represends the greatest potentaial threat lo ats survival.

During the present work, several clutches of developing eggs were found ou the sut face of moss at Harts. Mountains. The site had been covered by at snowdrift for some time, Fggliyying beneath the snow rather than in nest could account for their focation and Iater exposure after the thaw. The erubtyos wouk be prone 10 desiccalion helore completing their development. Altematively stepping on patches of moss when walking across the site could eject eges

Irom nest chambers. Whichever is the case, caution is atvasable when workmg al hreeding locations.

Acknowledgnents

D) Giamene Watson recorded the call used in the analysis. Dr Date Roberts lowated the tirst nest chamber and helped to clarify the breeding biology Dr Roy

Swain and Mr J. Lim provided assistance in the laburatory, and Nikki Mitehell helped in the field. Barbata and Peter Willson, Jayne Balmer, Sib Corbett and Michacl Askey-Doran reported the calls from Mi Norold. Bathurst Range, Monnlight Ridge and Mt Meladeuca. We thank saff of the Parks and Wildlife Service who contributed to this study and Assoc. Profs A, A, Martin and M, S, Tylec for consiructive reviews. of the manuscript.

Keferences

BiAbE, A. J. D. (1973) Taxonomy and relationships of mynbatrachine longs (Leptedactylidayn a numerial

Brathard, D. F * N SFYMOUR, R. S. (1985) Encrey conservation đuring the delayed lazching jerried in the frow Peoutoplerye bolbromi. Plosial. Zool, 58(5), $491-490$.
BreMs. M. I. \& Pobci-n, I D. (1982) Foristics and fire regime of is vegetation sequence from sedgeland-heath to rainforest at Bathursi Rarbour, Tasmania. Aust. J. Bot. $30(6), 659-676$
 troges morphology and pleylogenctic retatomotups in Psewdthmenechirus. J. Herpetol, 22(4), 439-456.
Davis. M. (1989) Ontogeny of bone and the role of heterochrony in the mybhatrachine genera Uperolefia. Crimia and Pscudophryne (Anura: Leptodacrylidac. Myobatrachinuel. 1, Mapphot. 200. 269.300.
\& Burion 'T C. (1982) Ostcology and inyolong of the gastric brooding froy Rheobarrachus vilus (Anura: 1 eptodactylidaci Anst J. Zomi, 30, 503-521.
 small sertebratex. Fieddiana Techniques 4. H. ik .
Diwirkkis, G. \& Uhinin, L. D. (1977) Enryone clearigg of alcian blue siained whole small verlebrates for denmensiration of cartitage Stain Technel. 52, 229-331,
Gillenay. R W (1986) Australian snowfielits past and present. In Barlow. B. A. (Ed.) "Elora and Fauna of Alpine Austala - ages and ongins" (CSIRO, Metburbie).
(i) s1it T.I. I. (1972) "Alutsalian climate patterns" (Nelson. Mollownene.
Crasibson, A. G. C. (1481) Morpbology and plylugenetic position of the West African Didynamipus syoestedti
 Nis surpi. XV. N(t. 11. 187-215.
Hakrisul. PA \& LIIIfHOHN. M I (1985) Diphasy in thic adyertisement ealls of Geocrinta laeves (Anura: Leptoductylidaes: Vecol responses of males during fied playback experiments. Behar. Eivel. Soctobiol 18, 6773.
Heyer. W R. Danihhriy C. II \& Maxson. L. R. (1982) Systenatic resolutian of the genera of the Crinia complex (Amphitia: Anura: Myobatrachidaes. Prom. Biof. Soc Wavhingtorn 95, 423-427.
Lithamen, M. J. 1959, Call differeutation in a complex of seven specres of Crinia (Amuna, Lepordactylidae). k.v/ution 13. 452-46x.
(1961) Age and arigin of some southwestern Australian species of Crimta (Anura: Leptodactylidae) io. 515.536. In Blair, W, F, (Ed.). "Vertebrate Speciation" (University of Texas Press. Ausfin).
(1964) Geographie isolation and mafing call differentistion in Crima sighifera. Evshation 18. 262-206. (1970) Crinio kemuniensis (Anura. Leptedactylidac): Geograptic distribulion, maling call sitruciure, and relampahips, thai Lith. Sins Nigv Sinath Males 94. 119127.
\& Maktin, A, A, (1964) The Grimia laevis compler (Snufa Leptodactyldae) inexruth-caxtern Australia. Ales A Zool 12. 70-83.
Robekis. J. D. Warson G. F. \& Davirs, M. (1993) Fomily Myobatrachidace pe: 41-57. In Rose, G. A (Ed.) "Fauna of Australia, Vol, 2A Amphibia and Reptiliat." (AGPS, Canberia). \& Watson, G. F. (1985) Patteras of distribution. speciation and vicariance biogeography of southeastem Australian amphibuans. pp. 91-97. Tn Grigg, G., Shinc R \& Ehmann, H. (Eds) "The hiology of Australasian foogs and reptiles: (Surrey Reatly \& Sons, Chipping Norton),

1) NCH, J. D. (1971) Evolutionary relationships, usteology, and eoogengraphy of leplodactyloid frogs. Unw: Kansas Mus. Nut. Hisw. Oecas. Puhl. 53, 1-238.
Mihony. M., Tylek, M. J. \& Davils, M. (1984) A new species of the eenus Rheobatractios (Amms 1.eptodactylidac) - from Queensland Thuns. R. Soc; S Atest 108(3), 155-162,
Main, A. R. (1963) A new spectes of Crmia (Anura Eeptadactylidae! Irom National Park, Nornalup, W. Ausr. Nat, 8. 143-144.
(1964) A new specteb of Psemdophryne (Anora: Leptodictylidac) from north-western Austrilia. Mbíd. 9. 16.72

LTTHFOHN, M J. \& LEE, A, K, (1959) Ecolug : of Ausiratian Irogs. pp. 396-411. In Keast. A. Crocker. K. L. \& Christian. C/S. (Eds) "Biogeography and ecolingy in Australiu" Momugraph. Beol VIII (W) Junk. The Hague).
MARTIN: A. A. (1967) Australian anuran life histories: some evolutionary and ecological aspects. Pp. 175-191 in Weatherly, A H (Ed.) "Australian inland walens and their fauna," (Ausiralian National Uoiversily Press, Canberra). \& LITLLEGHN, M J (1982) "Tasmanian amphbbans" Fauna of Tasmania handtorok No, 6 (EDiversity of Tasmania. Hobart).
 (IY78) Anatysiv of a barrow hybrid zone hotwoen tws species of Pseudophrme (Anura: Leptodactylidae) in south eastern Austratia. Einlation 32, 602-b12.
Parker. H. W. (1940) The Australasian froges of the Bamily Leptodactylidae Novit. Zool. 42, 1-106.
Robters. J. D. (i981) Terrestrial breeding in the Australian leptodactylid frog Miobalmichas goudder (Gray) desif Wild. Rer, 8, 45i-461
11984) Terrestral ege Jepwsithon and direct development in trenophryme romenda Tyler, a myobatractuid Irog from coasial sand dunes al Shark Biay, W. A, Ihist. 11. 191-200.
Rogekisun, S. (1993) On the irack of the unforgettable eroak Jusmanials new frog. Gien 15(2), 16-17.

Rounseyell., D. E. \& Swain, R. (1993) Current issues in the conservation of the terrestrial herpetofauna of Tasmania. pp. 71-74. In Lunney, D. \& Ayers, D. (Eds) "Herpetology in Australia - a diverse discipline." (Surrey Beatty \& Sons, Chipping Norton).
Townsend, D. S. \& Stewart, M. M. (1985) Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table. Copeia 1985 (3), 423-436.
Trueb, L. (1973) Bones, frogs and evolution. pp. 65-132. In Vial, J. L. (Ed.) "Evolutionary biology of the anurans: contemporary research on major problems" (University of Missouri Press, Columbia).
(1979) Leptodactylid frogs of the genus Telmatobius in Ecuador with description of a new species. Copeia 1979 (4), 714-733.
(1984) Description of a new species of Pipa (Anura: Pipidae) from Panama, Herpetologica 40(3), 225-234.

Tyler, M. J. (1968) Papuan hylid frogs of the genus Hyla. Zool. Verh. Rijksmus. Nat. Hist. Leiden No. 96, 1-203.
(1972) Superficial mandibular musculature, vocal sacs and the phylogeny of Australo-Papuan leptodactylid frogs. Rec. S. Aust. Mus. 16(9), 1-20.
(1978) "Amphibians of South Australia" (Govt Printer, Adelaide).
(1989) "Australian frogs" (Viking O'Neil, Melbourne).

Watson, G. F. \& Martin, A. A. (1973) Life history, larval morphology and relationships of Australian leptodactylid frogs. Trans. R. Soc. S. Aust. 97, 33-45.
ZEIGELER, D. (1994) "Survey of the distribution and habitat of the moss froglet (Genus nova, species nova) in southwest Tasmania". Wildlife Report 94/2, Parks \& Wildlife Service, Hobart.

Biodiversity Heritage Library

Rounsevell, D E et al. 1994. "A new genus and species of frog (Anura: Leptodactylidae: Myobatrachinae) from southern Tasmania." Transactions of the Royal Society of South Australia, Incorporated 118, 171-185.

View This Item Online: https://www.biodiversitylibrary.org/item/128623
Permalink: https://www.biodiversitylibrary.org/partpdf/81563

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * Parks and Wildlife Service, Deparment or Environmeni and Land Mablagement. GPO Box-44A, Hohart, Tas. 7001,
 + Department of Foolagy, University of Adelaide, S, Ause. 5005.
 \# Department of Zoilogy. University of Mebourne. Parkville, Vic, 3052.
 1 ANDEkSEN M. L. (1978) The cimparavive myology and onleology of the carpus and tarsus of selected antirans. PhD Dissertation, Dept of Systematics and Ecology, I/niversity of Kansas (Unpubl,).

[^1]: (1pervileta Citay (Anura Leptodactylidac). PhD Thesis. Department of Zoology. Unitersity of Adelaide timpoht

