DASYUROTAENIA ROBUSTA BEDDARD, 1912, AND D. DASYURI SP. NOY.. FROM CARNTVOROUS AUSTRALIAN MARSUPIAI.S

by IAN BEVERIDGE*

Abstract

Summary Bevekioge, 1, (1984) Dasyuroluenia robusta Beddard, 1912, and D, desynif sp. nov., from carneromoks Australlan marsupials. Truns. R. Soc: S. Aust, 10x(4), 185-195, 13 Decemtret, 1984,

Dasyurotuenia robusta Beddard. 1912. is redescribed trom specimens collected from the typr liost, the Tasmanian devil, Sarcophilus harrisil (Boitard). The rostellap hooks are deseribed for the first these. Dusyurofaetio dasyun/ sp. nov., from the liger vat, Dasvums mapulums (Kerl), in Queenslond and laamaina differs from 13. robusta in the size and shape of the rostellay hooks, the presence of iransverse osmoregulators. catials and the number of oterime branches. Speciuens from Dusyurus macklatio, described in entiog works as D. rohusta cannot now be assigned to either species with certainty: Icsions associated with D. dasyuri sp nove arv ileseribed and the taxenomie nosition of the genne disousied.

Kfr Woriss: Cestuda, Tacmidac, marsuplals, Dasyurotaenia.

Iniroduction

Dasyurmaentu robusta was Pirst described by Beddard (1912) from specimens found in a Tasmanian devil, Sarcophifus harisit (Boitard) (-Dasynurus ursimus) which died in I andon at the Gardens of the Zoological Society. Beddard (1912) deseribed a number of unusual morphologieal features including suckers armed with hooks, and placed the species, with some reservations, in the Taenioidea. Baer (1925) re-examined Beddard's rypes and indicated that a number of misinterprecations of the morphology of the cestode had been made, including the "armed suckers" which proved to be an armed rostellum. Baer (1925) concluded that the species belonged to an independent genus within the Taenioidea, while Wardle \& Meleod (1952), with considerable reservation, placed the genus within the family Taeniidae

Subsequently, Sandars (1957) redeseribed the species based on cestodes collected from lwo Dassurrus maculatus (keri) from Tasmania, confliming most of Baer's (1925) observations and concluding that the genus did belong within the Taeniidae. This taxonomic position was accepted by Yamaguti (1959), but it has been questioned by Rausch (1981) on phylogenctic grounds.

Recent collections of cestodes from dasyurids indicate that Iwo independent species of Dosyurotaenia have been formerly confused under a single specific same, largely because the rostellar hooks of the species have never described (Beddard 1912, 1915; Baer 1925; Sandars 1957). In addition, a reexamination of the morphology of the two species supports Rausch's conteution (1981) that this genus

[^0]may not belong to the laetilidae. Lit this paper, Dasyurotaenia robuvto is redescribed from Sorcophilus harrisil, the type host, and a new spectes is described from Dasyurzs maculainos.

Materials and Meihods

Cestodes were relaxed in water; fixed in 10% neurral buflered formol saline, and stored in $70 \mathrm{~F}_{n}$ ethanol. Whole mounts were stained with Celestine blue, delyydrated in graded ethanols, cleared in ctove oil and mounted in balsam. Scoleces were mourted in Berlese's fluid, and digital pressure was applied to the cover slip to enable examination of the rostellar hooks. Serial sections eut at a thickness of 5 m , were stained with haematoxylin and cusm. Giavid proglonides of D. dasyuri which had heen fixed in formalin were diced into small cubes, posttixed in osmium tetroxide and embedded in araldite. Thin sections were stained with lead cirrate and uranyl acetate and viewed with a Joel 100 C X electron microscope Additional specimens of Dasyurotaemia were obtained from preserved carcasses of Dasyurus mocalalus held in the National Museums of Viabrin. Melhourne
Meisurements are given in the lext. in mom, as the range followed, in parenitheses, by the mean and the number of measurentents made.
Abbreviations of institutions cited in text: AHC - Austruliun Helminth Collection, housed in the South Australian Museum, Adelaide, BMNHBritish Museum (Natural History), London. MHNGi-Muséum d'Histoire Nalurelle, Gieneva. SAM-South Austratian Museuri, Adeloide WAM - Western Australian Museum, Perth. WI Comnonweatio Scientificand Judustal Researeh Organisuian, Division of Widdife and Rangelands Reteurch, Canberra.

Dasyurotaenia robusta Beddard, 1912 FIGS 1-11, 26-28

Description: Cestodes of moderate size, up to 140 in length, 4 wide with up to 290 proglottides in gravid strobila. Scolex large (Fig. 1), $2.36(\mathrm{n}=1)$ in diameter, deeply embedded in intestinal mucosa of host. Suckers $0.30-0.38(0.33, \mathrm{n}=3)$ in diameter; rostellum $0.44 \times 0.15(\mathrm{n}=1)$ retracted within scolex, extremely muscular, sucker shaped, with $42(\mathrm{n}=1)$ rostellar hooks arranged in 2 rows. Large or anterior rostellar hooks (Figs 2-4, 26) 0.046-0.058 (0.054, $\mathrm{n}=10)$ long, base $0.056-0.062(0.059, \mathrm{n}=10)$ long; blade large, core striated, sometimes vacuolated; handle extremely short, relatively wide; guard long, wide, single lobe (Figs 4, 27). Small or posterior rostellar hooks (Figs 5-7) 0.042-0.052 $(0.047, \mathrm{n}=10)$ long, base 0.044-0.060 (0.054, $\mathrm{n}=10)$ long; blade large, core striated; handle extremely short, knoblike; guard large, flattened, almost bilobed distally (Figs 7, 28). Neck present.
Musculature of mature proglottides poorly developed. Outer longitudinal muscles single or in very small bundles; inner longitudinal muscles in larger bundles containing 20 or more fibres. Transverse muscles in several bands; including bands internal to inner longitudinal muscles and separating inner and outer longitudinal muscles; more poorly defined bands between bundles of inner longitudinal muscles. Dorso-ventral muscles sparse, crossing cortex and medulla at irregular intervals. Longitudinal osmoregulatory canals paired; ventral canal $0.10-0.19(0.13, \mathrm{n}=5)$ wide in mature proglottides, not joined by transverse canals, with valve-like flaps protruding into lumen at junction of proglottides; in one strobila, ventral canals of gravid proglottides with several smaller projections of canal wall in addition to major valves. Dorsal canal extremely narrow, sinuous, $0.05(\mathrm{n}=1)$ in diameter in mature proglottides, dorsal or external to ventral canal. Mature proglottides $0.35-0.60$ $(0.48, \mathrm{n}=5) \times 2.45-3.05(2.77, \mathrm{n}=5)$, length:width ratio 4.8-7.1 (6.0, $\mathrm{n}=5$) (Fig. 8). Gravid proglottides $1.45-2.20(1.75, \mathrm{n}=5) \times 2.60-3.50(3.18, \mathrm{n}=5)$, length:width ratio $1.2-2.3(1.9, \mathrm{n}=5)$. Genital pores almost exclusively unilateral, occasional genital pore on alternate side. Genital atrium narrow, situated in middle of lateral proglottis margin in mature proglottides dividing margin in ratio of 1:0.67-1:1.00 ($1: 0.88, \mathrm{n}=5$); in middle or posterior half of margin of gravid proglottides, dividing margin in ratio of 1:1.00-1:1.66 ($1: 1.35, \mathrm{n}=5$). Genital ducts pass between longitudinal osmoregulatory canals. Cirrus
sac elongate, thin-walled, invariably extending beyond osmoregulatory canals into medulla, $0.60-0.85(0.74, \mathrm{n}=10) \times 0.06-0.09(0.07, \mathrm{n}=10)$ in mature proglottides. Cirrus slender, approximately 0.01 in diameter, coiled, armature of extremely fine bristles visible on mid-region of cirri in section. Internal and external seminal vesicles absent. Vas deferens greatly coiled, narrow duct, loops medially, then at midline turns posteriorly, terminating between lobes of ovary. Vasa efferentia not seen. Testes numerous, situated in 1-2 layers in dorsal plane. Testes occupy most of medulla between osmoregulatory canals, occasionally extend over osmoregulatory canals on poral side of proglottis with small numbers of testes being outside canals (Fig. 8); testes confluent anterior to ovaries and frequently confluent posterior to vitellarium in 1 or 2 rows; row of testes posterior to vitellarium sometimes interrupted; always some testes posterior to vitellarium; small numbers of testes overlie ovaries. Testes number $170-223(200, \mathrm{n}=10)$ per proglottis; diameter $0.05-0.10(0.08, \mathrm{n}=10)$. Vagina $0.010-0.020(0.015, n=5)$ in diameter, straight, lined internally by hairs or bristles, surrounded by single layer of glandular cells. Proximal of 0.16 of vagina of wider internal diameter, unarmed. Seminal receptacle small, $0.06-0.08(0.07, n=5) \times$ $0.02-0.04(0.03, n=5)$, situated in mid-line between lobes of ovary (Fig. 10). Ovary bilobed, poral lobe smaller, $0.14-0.32(0.21, \mathrm{n}=10) \times 0.21-0.40(0.29$, $\mathrm{n}=10)$, aporal lobe $0.16-0.30(0.23, \mathrm{n}=10) \times$ $0.27-0.48(0.38, \mathrm{n}=10)$, joined by narrow isthmus. Vitellarium posterior to ovary, elongate laterally $0.07-0.14(0.11, \mathrm{n}=10) \times 0.47-0.90(0.70, \mathrm{n}=10)$. Mehlis' gland spherical, 0.08-0.10 (0.09, $\mathrm{n}=5$), in diameter, between vitellarium and seminal receptacle. Uterus arises as tubular structure in midline. Uterus in gravid proglottides with 6-9 (7, $\mathrm{n}=10)$ poral and $7-10(9, \mathrm{n}=10)$ aporal lateral uterine branches; uterine branches frequently subdivided laterally (Fig. 11). Eggs approximately spheroidal 0.033-0.048 (0.042, $\mathrm{n}=10) \times 0.035-0.040(0.038$, $\mathrm{n}=10$)(Fig. 9); embryophore thick, homogenous, non-striated, oncosphere $0.028-0.033(0.030, \mathrm{n}=10)$ $\times 0.023-0.030(0.027, \mathrm{n}=10)$; oncospheral hooks 0.008-0.010 (0.009, $\mathrm{n}=10)$.

Development of genital organs in single specimen 140 long: testes first visible in proglottis 95; first mature proglottis approx. 160 ; uterine filling commences in proglottis 190; male and female genitalia involuted by proglottis 230; fully branched uterus

[^1]

present by proglottis 256; first gravid proglottis 278; total number proglottides 290 ,
1lose:- Sarcophilus harrisii (Boitard, 1841) (Marsupialia: Dasyuridae).
Sile in hast Small intestine.
Types: Collected: Iondon Zoologieal Society Gardens; slides of serial sections MHNG 24/53-61.
Mancral cxamined types; 3 wecmens, Adefade Zonlogical Gardent, $7, \times 1.19 \times 0$, collected by M. G. ricitlaghta0. ALIC 824) ard 51384 : I specimen (without sentex). Chicago Joological (iarders, collected by V . Ronlat, BMNH.1967.9.28.23.

Dasyurotaenia dasyuri 50 nov.

EIGS 12-23, 24. 25. 29-31
Descripion (from types): Large cestodes, 237-50)6 ($400,11=5$) m lengith. 2.5-3.9 $(2.8, n=5$) wide, winh 280-330 (310) proglotfides in gravid strobilae Scolex larec, $2.40(\mathrm{n}=1)$ in diameter, deeply embedded in mucosa of hesi. Suckers $0.32-0.38(0.35, n-9)$ in diameter, rostellum $0.38-0.50(0.43, \mathrm{n}=4)$ in diameter avitl $36-38(n=4)$ rostellat books arranged in two rows (Fig. 12), Largc or anterior rostellar hooks $0.105-0.110(0.107, \pi-20)$ long, base $0.077-0.093(0.085, u=20)$ long (Figs 13, 14, 24): blade latge, core frequently vacuolated; handle extremely small; guard clongate, not enlarged towards extremity (Figs 15, 25). Small or posterior rostellar honks $0.080-0.093(0.087, n=20)$ long, base $0.060-0.083(0.075,11=20)$ long (Figs I7, 24); blade large, core frequently vacuolated; hande virtually absemt, guard large, broad, frequently bilobed distally (Figs 18, 25) Nech present. Musculature not stiongly developed. Outer longitudinal museles single or in suall bundles of 2-5 fibres, inner tongitudinal muscles in larger bundles, up to 0,025 in diameter, containing 20 or more fibres. Transyerse nuseles in several bands; two mose prominent bands immediately internal to inner longitudinal muscles and separating inner and outer longitudinal muscles; poorly delined bands between bundles of inner longitudinal museles. Dorso-ventral musclen sparse, single, crossing cortex and medulla at irreculat intervals. Iongitudinal osmoregulatory canals paired; veniral canals $0.11-0.17(0.15, \mathrm{If}=5)$ in diameter in manure proglatiden, jomed at posteruar margen of each progloltis by broad Iransverse catral. Ventral canals with valve like flaps protruding into lumen at junction ot proglotides. Dopsal samat exiremely narron, sinuous, 0.01 (n 5) 10 dameter in matiure proglotides. Mature proglor-
udes $1.4-2.5(1.7, n=10) \times 2.5-3.0(2.9, n=10)$, length:width ratio 1,02-2.64 $(1,84, n-10)\left(5^{\prime} \mathrm{ig}, 20\right)$. Gravid proglotides $1.8-3.9(2,7, n=10) \times 1.9-3.3$ (2.8, $\mathrm{n}-10$), length:widitr raio $0.71-1.53$ (1.07, $\mathrm{n}=10$). Genital pores mainly undateral, oceatonally alternate irregularly. Genital atrium shallow, situated in anterior half of lateral poglotfis magin in mature proglotrides, dividing margin in ralio 1:1.3-1:2.4 (1:1.8, $\mathrm{n}=10$): in middle of matgin in gravid proglotrides, dividing margin it fano 1:0.9-1:1.5 (1:1.1, $11-10)$. Geniual ducts pass between longitudonal osmoregulatory canals. Cirros sax clongate, thin-walled (Fig. 19) invariably extending beyond osmoregulatory canals inte medulla, $0.50-0.71(0.57, n=10)<0.08-0.12(0,10, \mathrm{n}=10)$ in maiture proglottides. Girrus slender, 0,0$)-0,02(0,015$, $\mathrm{n}=5$) in diameter, coiled, armature of fine hairs visible on distal region of some euri under high magnification, Internal and external semimal vesictes absent. Vas deferens greatly foiled, harrow duct loops medially and anteriorly; then at midline turns postciiorly, terminating near seminal receptacle Vasa efferentia not seen. Testes numerous, situated in 1-2 layers in dorsal plancs. Testes docupy most of medullat beiween osmoregulatory canals, except atea of female genitalia; testes confluent anterior to vas deterens: testes usually confluent posterior to vitellanim, of with 1-3 testes posterior $t \infty$ and overlyins vitellatium; occasionally no testes posterior to vitellatium. Testes number $150-160(n=2)$ per proglottis; diameter $0,06-0,08(0.07, n=10)$, Vagina anproximalely 0,12 in shameler, straighi, lined internally by tine hairs, surrounded externally by single layer ot glandular cells. Prosimal 0.15 of vagina tareTow, surrounded by thicker musele layer than remaigder of yagina, lacking efanduar cell investment. Seminal receptacle ovoid (fig, 21), 0.11-0.16 $(0.14, n=10)=0.07-0.10(0.9, n=10)$ when Cilled. situated in mid-line betwen lobes of owary, Ovary bilobed, poral tobe sinall, $0,26-0,39(0,31,12=10)$ $<0.12-0.25(0.20, n-10)$, aporai lobe $0.32-0.44$ $(0.37-n=10) \leqslant 0.15-0.30(0.21, n=10)$, joined by asarow isthmus. Vilellarium posterior lo ovars; reniform 0.12-0.24(0.20, $n=10) \times 0.18-0.31$ (0.23, $\mathrm{n}=10)$. Meflis' gland spherical, $0.07-0.11$ ($Q .09$. $\mathrm{n}=10 \mathrm{~g}$ in diameter, between vitellariunt and semmal receptacle. Uterus arises us tubular strueture in midlind. Uterus in gravid proglotrides (Fig 233 with $6-17(12,10=10)$ poral and $10-20(15,1)=10)$ aporal lateral ulerine branches; uferine branchen frequenlly subditided laterally. Egg approximately spheroidal

[^2]

Figs 24-25. Rostellar hooks of Dasyurotaenia dasyuri, sp.nov.; 24, apical view of rostellum, hooks in lateral view; 25 , apical view of hooks showing differences in shape of guards of large and small hooks (arrowed). Scale lines 0.01 mm .

Figs 26-28. Rostellar hooks of Dasyurotaenia robusta Beddard; 26, large rostellar hooks, lateral view; 27, 28, apical view of hooks showing difference in shape of guard of large and small hooks (arrowed). Scale line 0.01 mm .

Figs 29-31. Histological features of scolex of Dasyurotaenia dasyuri sp.nov. and associated pathology; 29, sagittal section through scolex showing partly withdrawn rostellum; 30 scolex(s) lodged in muscularis externa immediately below mucosa (m); 31, scolex(s) lodged in muscularis close to serosal margin showing dome shaped projections of tissues (d) beyond normal serosal surface intestine and mucosa (m). Scale lines 1 mm .
(F1g. 22), 0.035-0.040 (0.038, n-10) $<0.030-0.034$ (0.032, $n=10$): embryophore thick, homogenous. nen-striated, oneosphere $0.022-0.025(0.024, \mathrm{n}=10)$ $\times 0.016-0.018-(0.017, \mathrm{n}=10)$; oncospheral hooks $0.008-0.010(0.008, \mathrm{a}=10)$. Development of gemial organs in 5 specinums: anlage first visible in proglotudes $60-120(85)$; iestes lirst vivible in proglotfides 180 - 190 (187); first mature proglottis approximately 205-220 (2t5); uteline filing commences in proglotitides 225-265 (245); firsl gravid proglolti) 270 320 (305); ratal proglortides $280-330$ (310).
barianort: Specionens from Tas; identical to types. except in the following minor Features: rostellar hook number more sariable that in rypes, $32-40$ (37, $\mathrm{n}=3$); latge rostellat hooks, $0.110-0.120(0.116$. $0-10)$, and small rotelifar hooks $0.093-0.098$ ($0.095, \mathrm{n}=10$) both slightly largec (approximately 0,010) than hooks of type specimens; testes number 169-226 (186, $\mathrm{n}-10)$ per proglotis, higher than in types; vitellarium $0.10-0.15(0.13, n=10) \times 0.21-0.38$ ($0.30, n=10$) refatiely wider and shorter than in types.
Hosi: Dasvarus macatatus (Ketr. 1792) (Marsupialia: Dasyuridae).
Site in hosk Small infestme
Types; Hololype, 8 paratyper, Mr Windsor Tableland, Qld. $16^{\prime \prime} 12^{\prime} \mathrm{S}, 145^{\circ} 05 / 5$, 17 sii. $198 z_{\text {, coll. }}$ D. M. Spratl Holorype, 2 stides SAM V3459, 3 paratypes, SAM V3460-V $3462 ; 4$ paratypes, AHC S2169-S2172. HC 12322; I paratype. BMNH 1983. 6.13. 1-2; I 4colex, strobilar tragments, paratypes. in collection of R. I. Rausch.

Fine siructure of the egre envelopes (Fig .32). The following envelopes were recognised surrounding the oneosphere. The outer envelope of the cge is bounded by a din virelline membranc, enclesing an irregular eytoplasmic layer. The outer

Fig, 32. Triansmission elecirum micouganh of vge envelopers. Dasvurntacna dassur, Stale lino. In μ.in e-embryophore; g-granular layer, ie-imher embryophoric membrane: oe-outer embryophoric membrane, vi-vacuolated layer; vm-vitelline membrane.
embryophoric membrane lies immediately esternal to the thickened embryophore. The embryophore is of uniform thickness and is composed of relativeIy homogenenus electron dense marerial which is not organtised into regular embryophoric blocks and is without lacunae or internal citcular bodies. Some areas within the embryophore are less electron dense and suggest cavities between bloeks but are not arranged in a regular fashion. A zoue of electron dense granules, the granular layer, lies between the embryophore and a broad sub-embryophoric vacuolated area whicts may represent aggregations of lipid bodics. The vacuolated zone and gratular laver is bounded internally by the inter embryophoric membràne. Imernal to this lies the oncosphere trounded by the oncospheral membrane.

Moterial examined; Ohd: types; Tas: 3 specimens, Sinithton, coll. B. L. Murulay, 1vii.1979; 3 specimens, Smithon, coll. D. M. Spritt, 2(6.iii.1968, WI C282, C43; 2 speamers, liddate, coll. B. L. Munday, 2 vii. 1976, AHC, HCl 0732 ; Iragmenis of specimem, Wynard, coll. unknowt. 22Ni.1922, whote pieserved earcass NMV C6304. sextodes AHC 9785.

Assoutuled Lesions (Figs 29-31): Scoleces of D. dasyuri lie deeply embedded in the exterual musele layers of the wall of the small imedtine of the host, either superficially, that is immediately below the submucosa, or, close to the serosal margin of the musedaure such that the position of the cestode scoles is indicated by a raised dome-shaped projection on the serosal surface. The neek and anterior region of the strobila lie in a narrow tunnel which opens futo the intestioal lumen. Two specimens of D. dusyuri were embedded singly, two were embedded together, and a funher three worms were embedded at a single site. The superficial layers liming the cavities induced by cestode invasion consist primarily of neerotic cells and of cell debris together with viable cells compressed by the distenrion of surrounding tissues. There are an addition, surtounding the scoleces, a few small localised areas of necrosix of the nyocytes and intilitations by inflammatory celts. The principal host reaction is a chronic intlammatory one with an infiltration of macrophages and lymphoctyes and a few plasma cells into tissues surrouuding the cestode. Polymorphonuclear leukoeyten are untommon, but Langhans-type giant cells are oceasionally present an the edges of lessions. Fibroblasts are prominent in a ent arcas on the outer edges of infiltrated areat.

Díscussion

In none of the previous descriptions of Dasvirotuema by Beddard (1912, 1915), Baer (1925) or Sandars (1957) have the rosellar books been adequately described. Beddard (1912) provided drawings of the
histology of a purported sucker of D. robusta showing sections of sclerotized hooks but did not describe the size or shape of the hooks. Baer (1925) had no scoleces to examine, but concluded from Beddard's description that the cestode in question possessed a rostellum armed with taeniid-like hooks. Sandar's specimens (1957), here attributed to another species, were without rostellar hooks, but were re-described under the name D. robusta. She estimated that some 96 hooks were normally present.

The material described above indicates that in the past two (or more) independent species have been confused under the single name D. robusta. The two species described in this paper differ markedly in the size and shape of the rostellar hooks, but have few differences of note in strobilar morphology, and this has undoubtedly led to the confusion.
D. robusta is known only from the type series collected from Tasmanian devils in the London Zoological Gardens, from the three specimens described here, collected from the same host species in the Adelaide Zoological Gardens and from a single specimen without scolex from the Chicago Zoo. Beddard (1915) reported the species in four of nine devils dying in the Gardens; however, examination of 294 devils in Tasmania has not revealed its existence (Gregory et al. 1974).

The present redescription, although based upon a very limited series of specimens is considered justified as the species may now be rare, and since the material available allows a fairly full description to be made for the first time, including the distinguishing features of the rostellar hooks.
D. robusta is distinguished from D. dasyuri by the form and size of the rostellar hooks (Figs 2-7, 13-18). The large rostellar hooks of D. robusta are only $0.046-0.058$ long compared with $0.105-0.120$ in D. dasyuri. In addition, the size of the hook blade is relatively smaller in D. robusta so that the length of the hook base is larger, on average, than the total length of the hook; in D. dasyuri the length of the base is less than the total hook length. In both species, the guard of the small hook is particularly broad, and this is more marked in D. robusta than in D. dasyuri.

The principal strobilar character distinguishing D. robusta from D. dasyuri is the transverse osmoregulatory canal joining the ventral canals on both sides of the strobila in each proglottis. The difference is not immediately obvious in mature proglottides, but the canals are readily visible in most gravid and near gravid proglottides and the presence or absence of transverse osmoregulatory canals can be readily ascertained. Beddard (1912) noted the lack of transverse canals in the type specimens of
D. robusta, and Baer (1925) confirmed that the canals were not visible in Beddard's sections, but suggested that their absence might be more apparent than real owing to the severely contracted nature of the type specimens. The new material confirms Beddard's (1912) observations that transverse canals do not exist.

Beddard (1912) discussed at some length the "membranes" stretching across the lumen of the osmoregulatory canals, noting that the lumen was occluded by "membranes" once in each proglottis. Baer (1925) explained Beddard's observations in terms of oblique histological sections passing through consecutive coils of the osmoregulatory canal, suggesting that the "membranes" were essentially artefacts due to the state of contraction of the specimens. The new specimens indicate that Beddard's observations were correct. At the posterior end of the proglottis in D. robusta and D. dasyuri, the lumen of the osmoregulatory canal is largely occluded by a valve-like extension of the canal wall. The structure is in most respects identical to valves which occur in comparable positions in the osmoregulatory canals of species of Taenia, described in detail by Kohler (1894). In specimens of D. robusta, the ventral canals are of extremely variable diameter, and in some incompletely relaxed proglottides, there are occasional folds in the canal wall similar to the incomplete "membranes" described by Beddard (1912). Baer (1925) was probably correct in ascribing these changes to the state of relaxation of the specimens.

The two species also differ in the number of lateral uterine branches, with 6-10 (9) in D. robusta and 6-20 (14) in D. dasyuri. Although these differences appear to be consistent in the material examined, they should be treated with some caution since Verster (1967) in a rescription of Taenia solium Linnaeus, 1758 and T. saginata Goze, 1782, two species which have frequently been identified from gravid proglottides by difference in the number of uterine branches, found that overlap in uterine branch number occurred if a sufficient number of proglottides was examined. Some overlap obviously occurs in uterine branch numbers of Dasyurotaenia spp. and more extensive series of specimens are required to test the validity of uterine branch number as a taxonomic character in this genus.

A number of minor morphological differences noted between D. robusta and D. dasyuri require more detailed examination in larger numbers of specimens before their reliability can be established. (i) The vitellarium was much shorter and wider in D. robusta (Figs 10, 20); however, this may have been due to the incomplete state of relaxation of the specimens of D. robusta. In addition, there was variation in the dimensions of the vitellarium be-
tween specimens of D. dasyuri from Tas. and ©ld the laller-specimens (the types) laving much barrower vilillaria. (ii) In specimens of D motusta. testes were occasmally found overlying the osmoregulatory canals or even entirely lateral to them. in contrast to \bar{D}. dasyuri in which the testes invariably lie belween the canals. (iii) The seminal reecjtacte in D. robusiu was smaller than D. dasveri and the cirrus sace slightly looget and more prominent. All features mentioned require examination in an extensive series of specimens before any confidence can be placed upon their ability to distinguish the two specice.

The data presented above suggest that D robusta is conlined to Sarcoptifus hurrisi and tial \mathcal{Q} dasyuri oeeuss only in Dasyuris macularus. Sandar's (1957) specimens deseribed under the name D. robista but collected from Dosyurtes macziatus mi Tas carinot definitely be assigned to elther species, siuce they had wo rostellar hooks. She stated that no transverse osmoregulatory canals could be seen, but prefaced her remarks by saying that detuils of the osimorequlatory canals could not be determined It would therefore be unwise to askume that het apecimens were 1). robusta based on het faiture to tind transverse osmoregulatory canals. Her figure (Fig. 27) of a gravid proglottis reveals 12-14 lateral uterine branches, suggesting that the specimeus she described may have been in laet Ω dasyuri and not D. rohusta. However, Dasyruoluenia is probably represensed by several specics in dasyurid inarsupials. In addition to the nely species described there a single juvenile cestode wilh 96 rostellar hooks, probably represeming vet anothet species. was co-parasitic with the type specimens of b dlosvari and has been deposited in AHC ($\mathbf{\$ 2 1 7 5}$). Sandar's (1957) specimens could be allibibuted to this species or could bave been a mixture of two specics, D. dasyuri and the undesctibed species. Another probably new species with 18-22 hooks. $0.100-0.108$ and $0.092-0.104$ Tong from Dasyurus -albopunerums Schlegel, 1880, in New Guinea is represented by two specimens only in the colleciion of the BMNH (1973.7.9.5-6). More specimens are requrred before the species can be described adequately. Finally, juvenile cestodes with 54 hooks $0.152-0.156$ and $0.122-0.126$ long were presen in it specimen of Satanelles hallucarus Gould, 18.42 fmm W.A. The specimens probably represent a now species of Dasvarotaena and have been deposited iff W/AM (79, 80, 81-1983).

A metacestode of Dasyurotaenia, idemified as D ? robusta was reported from the peritoneal savity of Potomus rridactylus (Keft, 1792) in Tas. by Grepory (pers, comm. in Beveridge, 1978). This particular specinen bad been identified by comparison with
seoleces Jroni Liasyums macwlams, and is now comsidered to be a metacestodic of D dasvimi.

The occumence of the scolex deeply embedded withim the intestimal walt of the frost is umensal among cesiodes. Purudiepis scolecinu (Rudolphi, 1819) burrows ino the small incstive of cormoran Phalacrocorar carbo Linnaeas, the scolex lodeing in the muscularis exterra close to the semosa (Karsad el al. 1982), and a simplar localisanion has been reported for Paradilepis delachansi (tultritann. 1909) in Phalacracorax afticanus (Gimelin) by Baer (1959). In mammals, the anoplocephalid Ectonorephtatoum abei Rausch \& Ohbayashif 1974, secuts with is seolex deeply buried in the wall of the sacculus rotundus of the pikas Ocfontona roylei (Ogilby) and O. macrotis (Guuther) (Rausch \& Ohbuyashi, 1974). The mecharisims of invasion of Dasyurotaenia were not clear fron the material studied Dasynoroaenia spa do not hate prominent rostellar glands to sectete proteolytic enzymes such as are present in L. abei, bur material from Ω. maculans (WL C43) does sue. gest that the juvenile cestodes of D. dusyuri become decply embedded in the small intestine wall before the inibation of progtollisalion. The histolugical reatentan to the scolex of D. dasvurt in similat to that deseribed for P seolecing and E abeot.

The genue Dosyurotoenta was :llocated to the Taerridae by Baer (1425) and this was contitmed subsequently by Sandars (1957). Rausch (1981) however has emphasised that the family, iu the form recognised by Abuladse (1965) and Yamagut (1959) is obviously polyphyletic. Cladotaenia Cohs. 1901 as indicated by Freemian (1973), belongs in the Dilepididare, based on the morphogenesis of the metacestodes, though the morphology of mature anid gravid proglothides is similar to the taenids. Anoplotaenia Beddard, 1911, a parawite of the Tasmanan Devil, likewise has a proglotios morphology akits to the 'Tacniidate while metacestode developinent indicates affinities with the Linstowiidae (Beveridge 1982). In asceriaining the erue relationship al genera withu the laeniidae, it is obvious that a knowledge of imetacestode development is a pre-requisite, and these dala currendy are lacking for Dusvurotuemu. As a consequepec, morphological data canuet be de basis tol a final determination of its taxopomic pusition, hut may provide clues.

Dasyumatenia is distingaished from other gencra of The Taemidae (sensu Yanaguti 1959) by the lare scolex emhedded deeply in the fissuer of the host and by the essentially unilateral genital pores. Sandurs (1957) mentioned the general body shape, the structure of the seolex, the form af the catrus sac and the development of the musculature as features distinguisbing the genus. While the form of the rit
rus sac is markedly different from A. dasyuri, a coparasite of the Tasmanian devil, it does not differ from most Taenia spp. and therefore cannot be considered diagnostic. Of the characters mentioned by Sandars (1958), only the arrangement of the musculature seems worthy of consideration as it is apparently unique in the family. Unfortunately, the musculature of many species of the Taeniidae has not been described in detail, and its value as a taxonomic character for Dasyurotaenia is therefore open to some doubt at present.

The structure of the egg likewise is inconclusive. The embroyophore is extremely thick, as in taeniids, but is not composed of radially arranged blocks with lacunae (see Fairweather \& Threadgold 1981) nor is it characteristic of dilepidid eggs (Pence 1967). In A. dasyuri, the structure of the egg was interpreted as being typically taeniid (Beveridge et al. 1975) yet the morphogenesis of the metacestode of this species indicates linstowiid affinities. Hence, there is some doubt as to the taxonomic significance of egg structure, and little weight can be placed upon the presence of a thick embryophore and insignificant outer envelope in the egg of D. dasyuri.

In D. robusta, the rostellum is apparently retractable, and can be retracted fully within the scolex. This characteristic, shown in Fig. 1, has been overlooked by previous writers, but it is not a characteristic of Taenia or Echinococcus (see Wardle \& McLeod 1952), the only two genera considered by Rausch (1981) as belonging to the Taeniidae. A retractable rostellum is a feature of the Dilepididae and Hymenolepididae (Wardle \& McLeod 1952) and
may indicate an affinity with these groups rather than with the Taeniidae.

In summary, none of the morphological data provided allows the definitive allocation of Dasyurotaenia to a family. Superficially it resembles the Taeniidae, but the retractable rostellum of the type species, the musculature, and structure of the egg, cast doubt on such affinities.

Rausch (1981) suggested that Dasyurotaenia could not be allocated to the Taeniidae on phylogenetic as well as morphological grounds, alluding to the evolution of the Dasyuridae in isolation from eutherian mammals, and the belief that the true taeniids have evolved exclusively within recent Carnivora. If this is the case, Dasyurotaenia may exhibit a strobilar morphology convergent with species of Taenia, yet be derived from alternative origins, either the Linstowiidae of dasyurid and peramelid marsupials (Beveridge et al. 1975, Beveridge 1982) or Diplepididae from accipitriform birds (Beveridge et al. 1975). Elucidation of the life cycle of the parasite will be required before a final answer can be given.

Acknowledgments

My sincere thanks are due to D. M. Spratt for providing most of the material described in this paper and for reading the manuscript, to R. Bray and C. Vaucher for lending material in their care, to M. G. O'Callaghan and B. L. Munday for collecting the material from Sarcophilus and Dasyurus respectively and to Dr R. L. Rausch for reading the manuscript. The electromicrograph was taken by K. Smith.

References

Abul.adse, K. 1. (1964) Taeniata of animals and man and diseases caused by them. In Essentials of Cestodology, Vol. 4. Ed. K. I. Skrjabin. Akademia Nauk SSSR. (English translation, Israel Program for Scientific Translations, Jerusalem, 1970).
BAER, J. G. (1925) Some Cestoda described by Beddard, 1911-1920. Ann. Trop. Med. Parasit. 19, 1-22.

- (1959) Helminthes parasites. Exploration des Parcs Nationaux du Congo Belge, Mission Baer-Gerber (1958). (Institut des Parcs Nationaux du Congo Belge :Bruxelles.).
Bedoard, F. E. (1912) Contributions to the anatomy and systematic arrangement of Cestoidea. V. On a new genus (Dasyurotaenia) from the Tasmanian devil (Dasyurus ursinus), the type of a new family. Proc. Zool. Soc. Lond. 1912, 677-695.
- (1915) Contributions to the anatomy and systematic arrarigement of Cestoidea. XVI. On certain points in the anatomy of the genus Amabilia and Dasyurotaenia. Ibid. 1915, 175-191.

Beviridge, I. (1978) Helminth parasites of Australian marsupials. In Proceedings of Course No. 36 for veterinarians-Fauna. (Post-graduate committee in Veterinary Science, University of Sydney, Sydney.)
(1982) Specificity and evolution of the anoplocephalate cestodes of marsupials. Mem. mus. nat. Hist. nat. nouvelle serie, Serie A., Zoologie 123, 103-109.

- Rickard, M. D., Gregory, G. G. \& Mundmi, B. L. (1975) Studies on Anoplotuenia dasyuri Beddard, 1911 (Cestoda: Taeniidae), a parasite of the Tasmanian devil: observations on the egg and metacestode. Int. J. Parasil. 5, 257-267.
Fairweather, I. \& Threadgiold, L. T. (1981) Hymenolepis nana: the fine structure of the embryonic envelopes. Parasitology 82, 429-443.
Freemin, R. S. (1973) Ontogeny of cestodes and its bearing on their phylogeny and systematics. Advances in Parasitology 11, 481-557 (Academic Press: London).

Gregory, G. G., Munday, B. L., Beveridge, 1. \& Rickard, M. D. (1974) Studies on Anoplotaenia dasyuri Beddard, 1911 (Cestodae, Taeniidae) a parasite of the Tasmanian devil: life cycle and epidemiology. Int. J. Parasit. 4, 187-191.

Karstad, L., Sileo, L., Okech, G. \& Khalil, L. F. (1982) Pathology of Paradilepis scolecina (Cestoda: Dilepididae) in the white-necked cormorant (Phalacrocorax carbo.) J. Wildl. Dis. 18, 507-509.
Kohifr, E. (1894) Der Klappenapparat in den Excretionsgefassen der Taenien. Z. Wiss Zool. 57, 385-401.
PENCE, D. B. (1967) The fine structure and histochemistry of the infective eggs of Dipylidium caninum. J. Parasit. 53, 1041-1054.
RAUSCH, R. L. (1981) Morphological and biological characteristics of Taenia rileyi Loewen, 1929 (Cestoda: Taeniidae). Can. J. Zool. 59, 653-666.
_ \& OhbaYashi, M. (1974) On some anoplocephaline cestodes from pikas, Ochotona spp. (Lagomorpha) in Nepal, with the description of Ectopocephalium abei gen. et. sp. n. J. Parasit. 60, 596-604.
SANDERS, D. F. (1957) Redescription of some cestodes from marsupials. 1. Taeniidae. Ann. Trop. Med. Parasit. 51, 317-329.
VERSTER, A. (1967) Redescription of Taenia solium Linnaeus, 1758 and Taenia saginata Goeze, 1782. Z. Parasit. 29, 313-328.
WARDLE, R. A. \& McLeod, J. A. (1952) The Zoology of Tapeworms. (University of Minnesota Press: Minneapolis.)
Yamaguti, S. (1959) Systema Helminthum. II. The Cestodes of Vertebrates. (Interscience Publishers: New York.)

Biodiversity Heritage Library

Beveridge, Ian. 1984. "Dasyurotaenia robusta Beddard, 1912, and D. dasyuri sp. nov., from carnivorous Australian marsupials." Transactions of the Royal Society of South Australia, Incorporated 108, 185-195.

View This Item Online: https://www.biodiversitylibrary.org/item/128035
Permalink: https://www.biodiversitylibrary.org/partpdf/82197

Holding Institution

South Australian Museum

Sponsored by

Atlas of Living Australia

Copyright \& Reuse

Copyright Status: In copyright. Digitized with the permission of the rights holder. License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.

[^0]: * Duison of Vecemary sciences, Somh Australan Depariment of Agriculbure, co Itrsifuic of Medical and Veterinary Science, Frome Road, Sdelaide, Souils Australia.

[^1]: Figs 1-11, Dasyurotaenia robusta Beddard. I. Scolex with rostellum retracted; 2-7, rostellar hooks; 2, 3, large or anterior rostellar hooks, lateral view; 4, large rostellar hook, radial view; 5, 6, small or posterior rostellar hooks, lateral view; 7. small rostellar hook, radial view; 8 , mature proglottis; 9 , egg; 10, female genitalia; 11, gravid proglottis. Scale lines: fig. $1,1.0 \mathrm{~mm}$; figs $2-8,11,10,0.1 \mathrm{~mm}$; fig. $9,0.1 \mathrm{~mm}$. g-guard; h-handle; t-tip.

[^2]: tosiellar hook w lateral view; 15, large rosiellar hook, apical view, 16, 17, snall or posfenor rusteltar boubs. baferal vies: is small mosicllar hook, apical view; 19, cierns sac and distal vagina; 20 , manure progloitix 21, female genialia;
 10 man , e-ghard; h-handle: 1-lip.

