MycoKeys 70: 59-88 (2020) A peer-reviewed open-access journal doi: 10.3897/mycokeys.70.53674 RESEARCH ARTICLE fe) Myco Keys research http://mycokeys.pensoft.net Launched to accelerate biodiversity Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae Danushka S. Tennakoon'??, Kasun M. Thambugala’, Dhanushka N. Wanasinghe’, Eleni Gentekaki*’, Itthayakorn Promputtha®’, Chang-Hsin Kuo', Kevin D. Hyde”?*°8 | Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan 2 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4 Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka 5 CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 6 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 7 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 8 Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China Corresponding author: Chang-Hsin Kuo (chkuo@mail.ncyu.edu.tw) Academic editor: Huzefa Raja | Received 27 April 2020 | Accepted 3 June 2020 | Published 27 July 2020 Citation: Tennakoon DS, Thambugala KM, Wanasinghe DN, Gentekaki E, Promputtha I, Kuo CH, Hyde KD (2020) Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae. MycoKeys 70: 59-88. https://doi.org/10.3897/mycokeys.70.53674 Abstract A novel ascomycetous genus, Elongaticollum, occurring on leaf litter of Hedychium coronarium (Zingib- eraceae) in Taiwan, is described and illustrated. Elongaticollum is characterized by dark brown to black, superficial, obpyriform, pycnidial conidiomata with a distinct elongate neck, and oval to oblong, hyaline, aseptate conidia. Phylogenetic analyses (maximum likelihood, maximum parsimony and Bayesian) of combined ITS, LSU, SSU and ¢ef/-« sequence data revealed Flongaticollum as a distinct genus within the family Phaeosphaeriaceae with high statistical support. In addition, Ophiosphaerella taiwanensis and Phae- osphaeriopsis beaucarneae are described as new species from dead leaves of Agave tequilana and Beaucarnea recurvata (Asparagaceae), respectively. Neosetophoma poaceicola is reported as a new host record from dead leaves of Musa acuminata (Musaceae). Newly described taxa are compared with other similar species and comprehensive descriptions and micrographs are provided. Copyright Danushka S.Tennakoon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 60 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Keywords Asparagaceae, Dothideomycetes, leaf litter, new taxa, Zingiberaceae Introduction Plant litter is considered as one of the main contributors to net above-ground primary productivity of terrestrial ecosystems (Swift et al. 1979; Berg and McClaugherty 2008; Krishna and Mohan 2017). Since plant litter is returned back to the soil, it represents a major source of organic carbon in forest soils (Berg 2003). Plant litter can be defined as a collection of fallen leaves, twigs, seeds and other woody debris that accumulate on the ground as a natural part of the forest ecosystem (Johnson and Catley 2002; Berg and McClaugherty 2008). In particular, leaf litter is the main source of organic matter and nutrients of the soil, compared to other litter types (Robertson and Paul 1999; Berg and McClaugherty 2008; Krishna and Mohan 2017). Leaf litter decomposition is a key process contributing to biogeochemical cycles in any forest ecosystem. Microorganisms are the primary agents in this process (Purahong et al. 2016; Mlambo et al. 2019). Fungi are considered as the “key players” in leaf litter decomposition, because of their ability to produce a wide range of extracellular enzymes (Pointing et al. 2005; Berg and McClaugherty 2008; Bani et al. 2018). Many researchers have been carrying out stud- ies of fungal species inhabiting leaf litter and have described numerous new species in Dothideomycetes (Hyde et al. 2019; Phookamsak et al. 2019; Tennakoon et al. 2019). The family Phaeosphaeriaceae is considered to be one of the most species-rich fam- ilies in Dothideomycetes and includes species that inhabit a wide range of ecosystems (i. e., marine, terrestrial, and mangroves) (Phookamsak et al. 2014, 2017; Bakhshi et al. 2019; Jones et al. 2019; Luo et al. 2019; Tennakoon et al. 2019). Phaeosphaeriaceae was established by Barr (1979), who designated Phaeosphaeria I. Miyake as the generic type of the family. Phaeosphaeriaceae species have immersed to superficial, globose to subglobose ascomata, short papilla, bitunicate asci and hyaline to pigmented, fusiform to ellipsoidal, filiform, or muriform ascospores (Bakhshi et al. 2019; Chaiwan et al. 2019; Maharachchikumbura et al. 2019; Yang et al. 2019). Members of Phaeospha- eriaceae are cosmopolitan, since they exhibit diverse lifestyles as saprobes, endophytes and pathogens of economically important plants (Barr 1992; Phookamsak et al. 2014, 2017; Yang et al. 2016; Hyde et al. 2020; Mapook et al. 2020). Apart from being cosmopolitan in nature, it appears that this family is phylogenetically highly diverse. Thus, recent studies have revealed a large number of new genera in this family. For instance, in the space of two years, eleven genera have been introduced, viz. Bhagirathi- myces S.M. Singh & S.K. Singh (Hyde et al. 2020), Hydeomyces Maharachchikumbura et al. (Maharachchikumbura et al. 2019), Hydeopsis J.F. Zhang et al. (Zhang et al. 2019), Neostagonosporella C.L. Yang, et al. (Yang et al. 2019), Parastagonosporella M. Bakhshi, Arzanlou & Crous (Bakhshi et al. 2019), Pseudoophiosphaerella J.F. Zhang Additions to Phaeosphaeriaceae (Pleosporales) 61 et al. (Zhang et al. 2019), Murichromolaenicola Mapook & K.D. Hyde (Mapook et al. 2020), Neoophiobolus Mapook & K.D. Hyde (Mapook et al. 2020), Paraleptospora Mapook & K.D. Hyde (Mapook et al. 2020), Pseudostaurosphaeria Mapook & K.D. Hyde (Mapook et al. 2020) and Vittaliana Devadatha et al. (Devadatha et al. 2019). Currently, more than 70 genera are accommodated in this family (Wanasinghe et al. 2018; Bakhshi et al. 2019; Maharachchikumbura et al. 2019; Phookamsak et al. 2019; Hongsanan et al. 2020; Hyde et al. 2020). We are investigating the diversity of microfungi on leaf litter in the tropics with the aim of clarifying their taxonomy based on morphology coupled with multi-gene phylogeny. As a part of this study, we have collected and isolated four taxa from Tai- wan, which belong to the family Phaeosphaeriaceae. We present herein comprehensive morphological descriptions and an in-depth phylogenetic investigation of the newly introduced species. Materials and methods Sample collection, morphological studies and isolation Decaying leaf litter samples of Agave tequilana FA.C. Weber (Asparagaceae), Beau- carnea recurvata Lem. (Asparagaceae), Hedychium coronarium J.Koenig (Zingiber- aceae), and Musa acuminata Colla (Musaceae) were collected from Dahu Forest Area in Chiayi, Taiwan and taken to the laboratory in Zip lock plastic bags. Specimens were examined with a LEICA EZ4 stereomicroscope. Micro-morphological charac- ters were determined using AXIOSKOP 2 PLUS compound microscope and images were captured with a Zeiss AXIOCAM 506 COLOR digital camera. Observations and photomicrographs were made from materials mounted in water. Permanent slides were preserved in lactoglycerol, sealed by applying nail-polish around the margins of cover slip. All measurements were made with ZEN2 (blue edition) and images used for figures were processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, USA). Single ascospore and conidial isolation was carried out following the method de- scribed in Phookamsak et al. (2014). The single germinated spore was picked up and transferred to potato dextrose agar (PDA) and incubated at 25 °C in natural light. Sub- sequent sub-culturing was done carefully to obtain pure culture and ensure absence of contaminants. Culture characteristics were observed after three weeks. Colonies were photographed and colonial characters were noted and described. Type specimens of new taxa were deposited at the herbarium of Mae Fah Luang University (MFLU) and National Chiayi University Herbarium (NCYU). Living cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and National Chiayi Uni- versity Culture Collection (NCYUCC). Faces of Fungi and Index Fungorum numbers were provided as in Jayasiri et al. (2015) and Index Fungorum (2020). 62 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) DNA extraction and PCR amplification Total genomic DNA was extracted from scraped fresh fungal mycelium using the DNA extraction kit E.Z.N.A Fungal DNA Mini Kit (D3390-02, Omega Bio-Tek) following the manufacturer’s protocol. The DNA product was kept at 4 °C for DNA amplification and maintained at -20 °C for long term storage. DNA was amplified by polymerase chain reaction (PCR) for four genes, the large subunit (28S, LSU), small subunit (18S, SSU), internal transcribed spacers including the 5.8s rDNA (ITS1-5.8S-ITS2) and translation elongation factor 1 alpha (tefl-«). The partial LSU gene was amplified by using the primer combination LROR and LR5 (Vilgalys and Hester 1990; Rehner and Samuels 1994); partial SSU was amplified with NS1 and NS4 (White et al. 1990), nuclear ITS was amplified with primers ITS5 and ITS4 (White et al. 1990), and tef7-« gene was amplified using the primers EF1-983F and EF1-2218R (Rehner et al. 2001). Amplification reactions were performed in 25 ul of total reaction that contained 9.5 ul of sterilized water, 12.5 ul of 2xPower Taq PCR MasterMix (Tri-I Biotech, Taipei, Taiwan), 1 pl of each forward and reverse primers and 1 pl of DNA template. The PCR thermal cycle program of ITS, LSU, SSU and tefl-« gene was processed initially at 94 °C for 3 minutes, followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 55 °C for 50 seconds, elongation at 72 °C for 1 minute and a final extension at 72 °C for 10 minutes and a holding temperature of 4 °C. The PCR products were analyzed by 1.5% agarose gels containing the Safeview DNA stain (GeneMark, Taipei, Taiwan) to confirm their expected molecular weight. PCR products were purified and sequenced with prim- ers mentioned above by Tri-I Biotech, Taipei, Taiwan. Nucleotide sequences were deposited in GenBank (Table 1). Phylogenetic analysis Phylogenetic analyses were performed using a combined LSU, SSU, ITS and tef1-a se- quence dataset. Newly generated sequence data were initially subjected to blast search in NCBI to obtain the closest matches in GenBank. Sequences generated from this study were analyzed with related taxa in the family Phaeosphaeriaceae, which were obtained from GenBank and from recently published data (Bakhshi et al. 2019; Hyde et al. 2019; Maharachchikumbura et al. 2019; Yang et al. 2019; Mapook et al. 2020) (Table 1). The combined dataset consisted of 168 sequences including our newly gen- erated sequences. Multiple alignments were automatically made with MAFFT v. 7 at the web server (http://mafft.cbre.jp/alignment/server), using default settings (Katoh and Standley 2013). The alignment was refined manually with BioEdit v. 7.0.5.2 (Hall 1999), where necessary. Evolutionary models for phylogenetic analyses were selected independently for each locus using MrModeltest v. 3.7 (Posada and Crandall 1998) under the Akaike Information Criterion (AIC). Phylogenetic trees were obtained from Randomized Ac- celerated Maximum Likelihood (RAxML), maximum parsimony analysis (MP) and Additions to Phaeosphaeriaceae (Pleosporales) 63 Table |. GenBank and culture collection accession numbers of species included in the present phyloge- netic study. Newly generated sequences are shown in bold. Species Acericola italica Allophaeosphaeria muriformia Alloneottiosporina thailandica Amarenographium ammophilicola Amarenomyces dactylidis Arezzomyces cytisi Banksiophoma australiensis Bhagirathimyc es himalayensis Bhatiellae rosae Brunneomurispora lonicerae Camarosporioides phragmitis Chaetosphaeronema achilleae C. hispidulum Dactylidina shoemaker Dematiopleospora cirsii D. mariae Didymocyrtis xanthomendozae Diederichomyces ficuzzae Dlhawksworthia clematidicola D. lonicera Edenia gomezpompae Elongaticollum hedychii E. hedychii Embarria clematidis Equiseticola fusispora Galiicola baoshanensis G. pseudophaeosphaeria Hydeomyces desertipleosporoides Hydeopsis verrucispora Italica achilleae I. luzgulae Jeremyomyces labinae Juncaceicola italica J. luzulae Kwanghwaensis miscanthi Leptosphaeria doliolum Leptospora rubella L. thailandica Longispora clematidis Loratospora aestuarii Mauginiella scaettae Melnikia anthoxanthii Murichromolaenicola chiangraiensis M. chromolaenae Muriphaeosphaeria galatellae Neoophiobolus chromolaenae Strain/Voucher no. MFLUCC 13-0609 MFLUCC 13-0277 MFLUCC 15-0576 MELU 17-2571 KUMCC 18-0154 MFLUCC 15-0649 CBS 142163 AMH 10127 MFLUCC 17-0664 KUMCC 18-0157 MFLUCC 13-0365 MFLUCC 16-0476 CBS 216.75 MELUCC 14-0963 MFLUCC 13-0615 MFLUCC 15-0612 CBS 129666 CBS 128019 MELUCC 17-0693 MELUCC 14-0955 JLCC 34533 LVPEI 3225 MFLUCC 18-1638 MFLUCC 17-2653 NCYUCC 19-0286 MBLUCC 14-0652 MELUCC 14-0976 MBLUCC 14-0522 HKAS 102234 MELU 14-0524 SQUCC 15259 SQUCC 15260 SD 2016-5 MELUCC 14-0955 MELUCC 14-0932 CBS 144617 MELUCC 13-0750 MFLUCC 13-0780 FU31017 CBS 505.75 CPC 11006 MFLUCC 16-0385 MELU 15-1277 CBS 117592 CBS 239.58 MFLUCC 14-1011 MELUCC 17-1488 MFLUCC 17-1489 MFLUCC 14-0614 MELUCC 15-0769 MELUCC 17-1467 LSU MF167429 KX910089 MNO017847 MK356345 KT306950 KY979794 MK836020 MG828989 MK356346 KX572345 KX765266 KE251652 MG829003 KX274250 KJ749653 JQ238616 MG829038 MG829012 MT321810 MT321811 MT321812 KT306953 MG828987 KU987669 MK356348 MK290839 MK290840 MK522498 MG829012 KT306951 MK442529 KX449530 MK503823 GU301827 DQ195792 KX655549 MH869303 KU848204 MN994559 MN994560 KT438329 KT438330 MN994562 GenBank accession no. SSU MF167430 KX950400 MNO017913 MK356359 KT306954 MN121697 MG829101 MK356360 KX572350 EU754045 MG829114 KJ749652 MG829144 MG829121 MT321803 MT321804 MT321805 KT306956 MG829099 KU987670 MK356362 MK290843 MK290844 MK522504 MG829121 KX449531 MK503829 GU296159 DQ195803 KX655554 KU848205 MN994605 MN994606 KT438331 KT438332 MN994606 ITS MF167428 KX926415 MN047087 MK356371 KT306947 KY979739 MK836021 MG828873 MK356373 KX572340 KX765265 KF251148 MG828887 KX274243 KX274244 KP170651 KP170647 MG828929 MG828902 KC193601 KU578033 MT321796 MT321797 MT321798 KT306949 MG828871 KU987668 MK356374 MK290841 MK290842 MK522508 MG828902 MK442589 KX500110 KX449529 MK503817 JE740205 DQ195780 KX655559 MH863024 MH857770 MN994582 MN994583 KT438333 MN994583 tef1—a MNO077065 KY979889 MK359065 KX572354 KF253108 MG829200 KX284708 KJ749655 KP 170677 KP 170673 MG829203 MT328753 MT328754 MT328755 MG829194 MG520895 MK359066 MG520896 MK290848 MK290849 MK523388 MG829203 MK442695 MG520897 MT009126 GU349069 KX655564 MN998163 MN998164 MG520900 MN998164 64 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Species N. chromolaenae Neosetophoma sp. N. aseptata NN. camporesti N. clematidis N. garethjonesii N. guiyangensis N. italica N. lonicerae N. lunariae N. miscanthi N. phragmitis N. poaceicola N. rosae N. rosaena N. rosarum N. salicis NN. samarorum N. sambuci N. shoemakeri N. tienshanensis N. xingrensis Neosphaerellopsis thailandica Neostagonospora caricis N. phragmitis Neostagonosporella sichuanensis Neosulcatispora agaves Nodulosphaeria multiseptata N. scabiosae Ophiobolopsis italica Ophiobolus disseminans O. rossicus Ophiosimulans tanaceti Ophiosphaerella agrostidis O. aquatica O. herpotricha O. korrae O. narmari O. taiwanensis O. taiwanica Paraleptosphaeria dryadis Paraleptospora chromolaenae Strain/Voucher no. MFLUCC 17-1449 MFLUCC 17-0844 CBS 145363 MFLUCC 15-0682 MFLUCC 13-0734 MFLUCC 14-0528 GZ13 MELU 14-0809 KUMCC 18-0155 CPC 26671 MELU 18-2675 CBS 145364 MFLUCC 16-0886 MFLUCC 18-1632 MFLUCC 17-0844 MFLUCC 17-0768 MFLU 17-0308 MFLU 17-0118 CBS 138.96 CBS 145365 MELU 16-1606 MFLUCC 17-0780 MFLUCC 17-0844 GZAAS18 0100 CPECQTIES9: CBS 135092 MFLUCC 16-0493 MFLUCC 18-1228 MFLUCC 18-1231 CPC 26407 MFLUCC 15-0078 MFLUCC 14-1111 MFLUCC 17-1791 MFLUCC 17-1787 MEFLU 17-1639 MFLUCC 14-0525 MFLUCC 11-0152 MFLUCC 12-0007 MFLUCC 16-0895 IGM35 MFLUCC 11-0152 MFLUCC 14-0033 MFLUCC 14-0033 k28 KS29 ATCC 56289 ATCC 64688 ATCC 201719 MFLU 18-2534 NTUCC 17-024 NTUCC 17-025 CBS 643.86 MFLUCC 17-1481 LSU MN994561 MG829035 MK540024 KU302778 KP684153 MHO018132 KP711361 MK356349 KX306789 MK503826 MK540025 KY550382 MT321809 MG829035 MG829037 MG829036 MK608026 KF251664 MK540026 MG602199 MG844348 MG829035 MHO018133 KP170721 KF251667 KX910090 KT950867 KY496728 KU708846 MG520959 MG520961 MG520964 KU738891 KM434281 KM434282 MF197563 MF197563 KM434281 KX767089 KX767089 MT321815 MN082419 MN082420 GU301828 MN994563 GenBank accession no. SSU MN994607 MG829141 KP684154 KY501126 MHO018136 KP711366 MK356363 MK503832 KY550383 MT321802 MG829141 MG829143 MG829142 GQ387517 MG602201 MG844350 MG829141 KX950401 KU708842 MG520977 MG520980 MG520983 KU738892 KM434290 KM434291 MF351604 MF351604 KM434290 KX767090 KX767090 MT321808 KC584632 MN994609 ITS MN994584 MG828926 MK539953 KU302779 KP744450 MH018134 KP711356 MK356375 KX306763 MK503820 MK539954 KY568986 MT321795 MG828926 MG828928 MG828927 MK608025 MH862569 MK539955 MG602203 MG844346 MG828926 MHO018135 KP170652 KF251163 KX926416 KT950853 KY496748 KU708850 MG520939 MG520941 MG520944 KU738890 KM434271 KM434272 MF351996 KM434271 KX767088 KX767088 KP690992 KP690986 KC848509 KC848510 KC848508 MT321801 MN082417 MN082418 JE740213 MN994587 tefl—a MN998165 MG829219 KY514402 MH051889 MK359067 MK540148 MG829219 KF253119 MK540149 MG844352 MG844352 MG829219 KP170678 MG520902 MK313854 MK313851 KU708854 MG520903 MG520906 MG520909 MG520910 KM434299 KM434300 KM434299 MG520911 MG520911 KP691016 KP691015 KC848515 KC848516 KC848514 MT328758 GU349009 MN998167 Additions to Phaeosphaeriaceae (Pleosporales) Species P. chromolaenicola Paraophiobolus arundinis P. plantaginis Paraloratospora camporesii Paraphoma chrysanthemicola P. radicina Parastagonospora dactylidis Parastagonosporella fallopiae P. fallopiae Phaeopoacea muriformis P festucae Phaeoseptoriella zeae Phaeosphaeria musae P. oryzae P. papayae Phaeosphaeriopsis agapanthi P. agavacearum P. agavensis P. aloes P. aloicola P. amblyospora P. beaucarneae P. dracaenicola P. glaucopunctata P. grevilleae P. nolinae P. obtusispora P. omaniana P. phacidiomorpha P. pseudoagavacearum P. triseptata P. yuccae Piniphoma wesendahlina Populocrescentia ammophilae P. rosacea Pseudoophiobolus achilleae P. galii Pseudoophiosphaerella huishuiensis Pseudophaeosphaeria rubi Pseudostaurosphaeria chromolaena P. chromolaenicola Poaceicola arundinis P. bromi Sclerostagonospora rosicola Scolicosporium minkeviciusii Septoriella phragmitis S. pseudophragmitis Setomelanomma holmii Setophoma antiqua S. chromolaenae S. endophytica Strain/Voucher no. MELUCC 17-1450 MELUCC 17-1789 MELUCC 17-0245 MELU 18-0915 CBS 522.66 CBS 111.79 MELUCC 13-0375 CBS 135981 CLUS Tet MELUCC 17-0372 MELUCC 17-0056 CBS 144614 MELUCC 11-0133 CBS 110110 CBS 135416 CPC 26303 CPC 29122 CBS 102206 CBS 145367 CBS 145368 CBS 110131 MELU 18-2586 MELU 18-2587 MELUCC 11-0157 MEFLUCC 13-0265 CBS 145369 CBS 102205 CBS 246.64 SQUCC:14333 CBS 198.35 CBS 145370 MEFLU 17-1800A MELUCC 13-0271 MELUCC 16-0558 CBS 145032 MELUCC 17-0665 MELU 17-0128 MELU 17-0925 MELUCC 17-2257 HS13 MELUCC 14-0259 MELUCC 17-1490 MFLUCC 17-1491 MELU 16-0158 MFLUCC 13-0739 MFLUCC 15-0129 MELUCC 12-0089 CPC 24118 CBS 145417 CBS 110217 LC6594 CBS 135105 LC3163 LSU MN994564 MG520965 KY815010 MN756637 KF251670 KE251676 KU058722 MH460545 MH460546 MF611638 KY824767 MK442547 KM434277 KF251689 KX228311 KY173520 KY090669 MK540030 MK540031 MT321813 MT321814 KM434283 K]522477 MK540032 KY090667 JX681119 MT075849 AF275496 MK540033 MN750592 KJ522479 KY554481 MK442551 MG829059 MG829060 MG520966 MG520967 MK522499 KX765299 MN994570 MN994571 MG829057 KU058727 MG829068 KF366382 KR873279 GU301871 MK511947 KF251747 MKS511956 GenBank accession no. SSU MN994610 MG520984 KY815012 MN756635 GQ387521 EU754092 MF611639 KY824769 KM434287 GQ387530 KY090693 MT321806 MT321807 KM434292 KJ522481 KY090694 AF275515 MN750607 KJ522484 KY554480 MG829164 MG829165 MG520989 MK522505 KX765300 MN994616 MN994617 MG829162 MG829172 KF366383 GU296196 ITS MN994588 MG520945 KY797641 MN756639 KF251166 KF251172 KU058712 MH460543 MH460544 MF611637 KY824766 MK442611 KM434267 KF251186 MH866082 KX228260 KY173430 KY090635 MK539959 MK539960 MH862851 MT321799 MT321800 KM434273 KJ522473 MK539961 KY090637 KY090644 MT075840 FJ462742 MK539962 MN750613 KJ522475 KY554482 MK442615 MG828949 MG520946 MG520947 MK522509 KX765298 MN994593 MN994594 MG828947 KU058717 MG828957 KR873251 MKS560161 KT389542 MK511909 KF251244 MK511931 65 tefl—a MN998168 MG520912 MG520913 KF253124 KF253130 MH460549 MH460550 MK442702 KM434296 MK540153 MK540154 MT328756 MT328757 KM434301 MG520918 MKS540155 MN756837 MG520919 MG520920 MK442706 MG829231 MG829232 MG520926 MK523389 MG520934 MN998174 MN998175 MG829229 MG829237 MK559452 GU349028 MK525070 KF253195 MK525092 66 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Species S. longinqua S. pseudosacchari S. sacchari S. terrestris S. vernoniae S. yingyisheniae S. yunnanensis Stagonospora foliicola Sulcispora sp. Sulcispora pleurospora Tintelnotia destructans T. opuntiae Vagicola vagans Vittaliana mangrovei Vrystaatia aloeicola Wingfieldomyces cyperi Wojnowiciella eucalypti W. kunmingensis Xenophoma puncteliae Xenoseptoria neosaccardoi Yunnanensis chromolaenae Yunnanensis phragmitis Strain/Voucher no. LC6593 CBS 145373 MFLUCC 11-0154 MFLUCC 12-0241 CBS 335.29 CBS 137988 LC12696 LC6532 CBS 110111 MFLUCC 14-0995 CBS 460.84 CBS. 127/37 CBS 376.91 CBS 604.86 NFCCI 4251 CBS 135107 CBS 141450 CPC 25024 KUMCC 18-0159 CBS 128022 CBS 120.43 CBS 128665 MFLUCC 17-1486 MFLUCC 17-1487 MFLUCC 17-0315 MFLUCC 17-1361 LSU MK511946 MK540039 KJ476146 KJ476147 KF251749 KJ869198 MKS511950 MKS511945 KEF251759 KP271444 KY090664 GU238123 KU058727 MG767312 KF251781 KX228337 KR476774 MK356354 JQ238619 KF251783 KF251784 MN994573 MN994574 MF684863 MF684865 GenBank accession no. SSU KJ476148 KJ476149 GQ387526 EU754118 KP271445 KY090698 GU238226 MG767313 MK356368 MN994619 MN994620 MF684867 MF684864 ITS MK511908 MK539969 KJ476144 KJ476145 KF251246 KJ869141 MK511914 MK511907 KF251256 KP271443 AF439498 KY090652 KY090651 KF251193 MG767311 KF251278 KX228286 KR476741 MK356380 KF251280 KF251281 MN994596 MN994597 MF684862 MF684869 tefl—a MK525069 KJ461319 KJ461318 KF253196 MK540162 MK525075 MK525068 KF253206 MH665366 KF253149 MG767314 MK540163 LT990617 MK359071 KP170686 KF253227 KF253228 MN998177 MN998178 MF683624 Bayesian inference analyses (BI). ML trees were generated using the RAxML-HPC2 on XSEDE (8.2.8) (Stamatakis et al. 2008; Stamatakis 2014) in the CIPRES Science Gateway platform (Miller et al. 2010) using GTR+I+G model of evolution. The MP analysis was performed using PAUP (Phylogenetic Analysis Using Parsimony) version 4.0b10 (Swofford 2002), with parameters as described in Tennakoon et al. (2019). Descriptive tree statistics for parsimony, such as Tree Length (TL), Consistency Index (CI), Retention Index (RI), Relative Consistency Index (RC) and Homoplasy Index (HI) were calculated. The BI analysis was conducted with MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001) to evaluate posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) by Markov Chain Monte Carlo sampling (MCMC). Six MCMC chains were run simultaneously, starting from random trees for 3,000,000 genera- tions. Trees were sampled every 100" generation for a total of 30,000 trees. The first 6,000 trees were discarded as the burn-in phase of each analysis. Posterior probabilities (Rannala and Yang 1996) were determined from a majority-rule consensus tree gener- ated with the remaining 24,000 trees. Phylograms were visualized with Fig Iree v1.4.0 (Rambaut 2012) and annotated in Microsoft Power Point (2010). Sequences of the new strains generated in this study are deposited in GenBank. ‘The final alignment and trees were deposited in TreeBASE, submission ID: 26088. Additions to Phaeosphaeriaceae (Pleosporales) 67 94/80/1 .00 Parastagonospora minima WWFLUCC 13-0376 Parastagonospora uniseptata \WFLUCC 13-0387 ti si Phaeoseptoriella zeae CBS 144614 Phaeoseptoriella _ | Stagonospora foliicola CBS 110114 Stagonospora oe Sclerostagonospora rosae \\FLU 18-0115 Sclerostagonospora Neosphaerellopsis thailandica CPC 21659 Neosphaerellopsis Camarosporioides phragmitis \\FLUCC 13-0365 Camarosporioides 87/--/1.00 Diederichomyces ficuzzae CBS 128019 Diederichomyces Sagi Didymocyrtis xanthomendozae CBS 129666 Didymoeyrtis Melnikia anthoxanthii \\FLUCC 14-1011 Metnikia Neostagonospora caricis CBS 135092 Neostagonospora Neostagonospora phragmitis 1535 =o Scolicosporium minkeviciusii \\FLUCC 12-0089 Scolicosporium 100/100/1.00 Juncaceicola italica \\F\UCC 13-0750 Nancacencaia | — Juncaceicola luzulae \\F\UCC 13-0780 100/100/1.00 Poaceicola arundinis FLU 16-0158 rms Poaceicola bromi \\FLUCC 13-0739 _ Amarenomyces dactylidis (\UNMCC 18-0154 ; 89/--0.95 Vagicola vagans CBS 604.86 Amarenomyces | Vagicola Amarenographium ammophilicola \\FLU 17-2571 Amarenographium L Hydeopsis verrucispora SO-2016-5 Hydeopsis 2/80/0.95 Allophaeosphaeria muriformia \V\FLUCC 13-0277 Allophaeosphaeria 84/81/0.99 Dactylidina shoemakeri \iFLUCC 14-0963 Dactylidina Septoriella pseudophragmitis CBS 145417 Septoriella allojunci \\FLU15-0701 Septoriella Septoriella phragmitis CPC 24118 Septoriella germanica CBS 145372 Phaeopoacea muriformis \\\F\LUCC 17-0372 Phaeopoacea Phaeopoacea festucae \V\F\UCC 17-0056 --/70/0.99 Neosetophoma shoemakerl \WiFILUCC17-0780 Neosetophoma rosae \WiFLUCC 17-0844 Neosetophoma shoemakeri \\F\LU16-1606 _/-10.99 Neosetophoma clematidis \\F\.UCC 13-0734 Neosetophoma aseptata CBS 145363 Neosetophoma lunariae CPC 26671 Neosetophoma salicis \\FLU 17-0118 96/90/1.00 Neosetophoma tienshanensis \\FLUCC 17-0844 Neosetophoma sp. |BRC 30176 Neosetophoma camporesii \V\FUCC 15-0682 81/--/1.00; Neosetophoma miscanthi WWFLU 18-2675 Neosetophoma guiyangensis GZ13 Neosetophoma 99/100/1.00° Neasetophoma xingrensis GZAAS18-0100 100/100/1.00 Neosetophoma poaceicola MFLUCC 18-1632 83/80/0.95 Neosetophoma poaceicola \\FLUCC 16-0886 93/89/1.00 Neosetophoma garethjonesii WiF\LUCC 14-0528 88/90/1.00 Afeasetophoma samarorum CBS 138.96 pa a toll Neosetophoma rosaena \\F\LUCC 17-0768 91/90/0995 Neosetophoma sambuci CBS 145365 Neosetophoma lonicerae ‘(UCC 18-0155 /80/1.00, Neosetophoma rosarum \\FLU 17-0308 Neosetophoma italica \iFLU 14-0809 Neosetophoma phragmitis CBS 145364 Brunneomurispora lonicerae «UNCC 18-0157 86/75/1.00 Brunneomurispora Figure |. RAxML tree inferred from combined dataset of ITS, LSU, SSU and tef1-« partial sequences of 168 strains of Phaeosphaeriaceae. Bootstrap support values for maximum likelihood (ML), maximum par- simony (MP) values >70%, and Bayesian posterior probabilities (BYPP) 20.95 are given above each branch respectively. The new species are highlighted in red, and the new record in green. Ex-type strains are in bold. The tree is rooted by Leptosphaeria doliolum (CBS 505.75) and Paraleptosphaeria dryadis (CBS 643.86). Results Phylogenetic analysis The combined dataset of ITS, LSU, SSU and tefl-« sequences comprised 3423 characters, of which 2418 characters are constant, 697 characters are parsimony-in- 68 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) t t 97/70/0.96 _Wojnowicia italica \WFLU 14-0732 100/100/1.00 ~~ Wajnowiciella eucalypti CPC 25024 Wojnowiciella 73)--11.00 Wojnowiciella kunmingensis \UMCC 18-0159 11.00 96/90/1.00 | Murichromolaenicola chiangraiensis \\\F\.UCC 17-1488 Munichromoleenicnia Murichromolaenicola chromolaenae \\\F\UCC 17-1489 100/100/1.00; Galiicola pseudophaeosphaena FLU 14-0524 Galiicola baoshanensis KAS 102234 ee Sg 100/100/1.00 Yunnanensis phragmitis \\FLUCC 17-0315 Yi i 92/100/1.00 Yunnanensis phragmitis \FLUCC 17-1361 een 100/100/1.00, Neoyunnanensis chromolaenae \\F_LUCC 17-1486 i is re Neoyunnanensis chromolaenae \\F\UCC 17-1487 ae dba as 100/100/1.00 Pseudostaurosphaeria chromolaenae \iFLUCC 17-1490 Deni ‘Hee Pseudostaurosphaeria chromolaenicola \\F UCC 17-1494 bis iad 99/90/1.00 Tintelnotia opuntiae CBS 376.91 Tinteinotia Tintelnotia destructans CBS 127737 100/100/1.00 | Embarria clematidis \\F\.UCC 14-0652 henie Embarria clematidis \V\FLUCC 14-0976 100/100/1.00 Hydeamyces desertipleosporoides SQUCC: 15260 H 99/90/1.00 Hydeomyces desertipleosporoides SQUCC: 15259 Ileomycos 84/70/1.00 | Arezzomyces cytisi \F\UCC15-0649 Arezzomyces 100/100/1.00 Dematiopleospora fusiformis \\FLU 15-2133 , Dematiopleospora mariae \\FLUCC 13-0612 EN OO 100/100/1.00 — Dihawksworthia lonicera \\\r-\.UCC 14-0955 Pinsaadswepthia —I-10.98 Dihawksworthia clematidicola \\F\.UCC 17-0693 Pseudoophiosphaerella huishuiensis S13 Pseudoophiosphaerella 100/100/1.00 Neoophiobolus chromolaenae W\F\UCC 17-1449 Neoophiobolus Neoophiobolus chromolaenae \\\F\UCC 17-1467 100/100/1.00 Ophiobolus disseminans '\FLUCC 17-1787 Ophiobolus Ophiobolus rossicus \V\FLU 17-1639 100/100/1.00 Mfuriphaeosphaeria galatellae \\\F\LUCC 15-0769 : : Muriphaeosphaeria galatellae \\FLUCC 14-0614 NORA Ophiobolopsis italica \\FLUCC17-1791 Ophiobolopsis = Ophiosimulans tanaceti \\\F\0UCC 14-0525 Ophiosimulans 100/100/1.00 Chaetosphaeronema hispidulum CBS 216.75 Chastoaneenanare a renamed _ OanoEGh panies iis MFLUCC 17-0245 | | araophiobolus plantaginis - fe - Paraophiobolus arundinis W\FLUCC 17-1789 Par@ophiobolus 100/100/1.00 Pseudoophiobolus mathieur \WWFLUCC 17-1785 Pseudoophiobolus italicus MF\LUCC 17-2255 Pseudoophiobolus 100/100/1.00 | Nodulosphaeria scabiosae \\\FLUCC 14-1111 Mestislon i pee Nodulosphaeria guttulatum \\F\LUCC 15-0069 ae csi len Bhagirathimyces himalayensis AW\H 10127 Bhagirathimyces 100/100/1.00 Su/cispora sp. MFLUCC14-0995 : Sulcispora pleurospora CBS 460.84 Sulcispora Wingfieldomyces cyperi CBS 141450 Wingfieldomyces 98/80/1.00 J -__— Loratospora aestuarii CBS 117592 Loratospora Paraloratospora camporesii \V\FLU 18-0915 Paraloratospora Mauginiella scaetiae CBS 239.58 Mauginiella 100/100/1.00 Halica luzulae \WAFLUCC 14-0932 Hall Italica achilleae \\F\LUCC 14-0955 ates Vittaliana mangrovei NFCC| 4254 Vittaliana Figure |. Continued. formative, while 308 variable characters are parsimony-uninformative in the maxi- mum parsimony (MP) analysis (TL = 6364, CI = 0.250, RI = 0.657, RC = 0.164, HI = 0.750). The RAxML analysis of the combined dataset yielded a best scoring tree (Figure 1) with a final ML optimization likelihood value of — 34492.801018. The matrix had 1331 distinct alignment patterns, with 37.25% of undetermined characters or gaps. Estimated base frequencies are; A = 0.247120, C = 0.228182, G = 0.268238, T = 0.256459; substitution rates AC = 1.250439, AG = 3.526348, AT = 2.517351, CG = 0.798250, CT = 6.907432, GT = 1.000; proportion of in- Additions to Phaeosphaeriaceae (Pleosporales) 69 Mt 94/100/1.00 Phaeosphaeriopsis beaucarneae MFLU 18-2586 70/T510.99 Phaeosphaeriopsis beaucarneae MFLU 18-2587 Phaeosphaeriopsis grevilleae CBS 145369 Phaeosphaeriopsis obtusispora CBS 246.64 is Phaeosphaeriopsis agavacearum CPC 29122 (8010.93 -° Phaeosphaeriopsis pseudoagavacearum CBS 145370 77190/1.00 “haeosphaeriopsis pseudoagavacearum \\F LU 17-1800 _ Phaeosphaeriopsis aloes CBS 145367 100/100/1.00° Phaeosphaeriopsis yuccae \WiFLUCC 16-0558 Phaeosphaeriopsis 71/90/1.00 Phaeosphaeriopsis phacidiomorpha CBS 198.35 Phaeosphaeriopsis agapanthi CPC 26303 84/80/1.00 Phaeosphaeriopsis triseptata \\F\LUCC 13-0271 Phaeosphaeriopsis aloicola CBS 145368 Phaeosphaeriopsis glaucopunctata \ViFLUCC 13-0265 | Phaeosphaeriopsis omaniana SQUCC:14333 84/--/—_ Phaeosphaeriopsis nolinae CBS 102205 83/90/1.00 Phaeosphaeriopsis amblyospora CBS 110131 Phaeosphaeriopsis agavensis CBS 102206 Phaeosphaeriopsis dracaenicola \ViFLUCC 11-0157 100/100/1.00 Populocrescentia ammophilae \\F_LUCC 17-0665 Populocrescentia rosacea MFLU 17-0128 ignite sls 85/90/1.00 | | Longispora clematidis \\F\U 15-1277 Longispora 100/100/1.00 | / epfospora rubella CPC 11006 Leptospora thailandica \\FLUCC 16-0385 stig Sea Xenophoma puncteliae CBS 128022 Xenophoma pasha daa Jeremyomyces labinae culture CBS 144617 Jeremyomyces Acericola italica \\FLUCC 13-0609 Acericola 100/100/1.00 | Paraleptospora chromolaenicola \\FLUCC 17-1450 Paraleptospora chromolaenae \\\FLUCC 17-1481 Ala 98/100/1.00 Equiseticola fusispora \\F\LUCC 14-0522 Equiseticola 99/100/1.00 Ophiosphaerella herpotricha 11D\SCC 07 ei oort-oa i Oohiosohaerelia herpoticha KS28 100/100/1.00 “x - Ophiosphaerella narmari ATCC 64688 _ Ophiosphaerella narmari AYCC 201719 Ophiosphaerella korrae ATCC 56289 Ophiosphaerelia ject 00. = 96/80/1.00 Ophiosphaerella agrostidis \\\F\UCC 11-0152 oat atts _ Ophiosphaerella agrostidis \GN\35 Ophiosphaerella taiwanensis MFLU 18-2534 of Ophiosphaerella aquatica \\F\LUCC 14-0033 100/100/1.00 Ophiosphaerella taiwanica NTUCC 17-024 Ophiosphaerella taiwanica '\)\UCC 17-025 100/100/1.00 Phaeosphaeria oryzae CBS 110110 Phaeosphaeria papayae CBS 135416 ibn aah Banksiophoma australiensis CBS 142163 Banksiophoma 100/100/1.00 Paraphoma radicina CBS 111.79 Darah 80/--/1.00 Paraphoma chrysanthemicola CBS 522.66 saleys nein 100/100/1.00 | Parastagonosporella fallopiae CCTU 1151-1 rastagonosporell 80/--/-- Parastagonosporella fallopiae CBS 135981 re = 100/100/1.00 Xenoseptoria neosaccardoi CBS 120.43 j SPIBD MBO 120/110 Xenoseptoria neosaccardoi CBS 128665 Silt 5 drei Setomelanomma holmii CBS 110217 Setomelanomma oe Pseudophaeosphaeria rubi M\F\LUCC 14-0259 Pecntonhksospmare Figure |. Continued. variable sites I = 0.596400; gamma distribution shape parameter « = 0.492378. All analyses (ML, MP and BI) gave similar results and are in agreement with previous studies based on multi-gene analyses (Hyde et al. 2019, 2020; Phookamsak et al. 2019). Phylogenetic analyses of the combined data matrix resulted in well-resolved clades, many of which had considerably high statistical support (Figure 1). Boot- strap support values for maximum likelihood, maximum parsimony 270%, and Bayesian posterior probabilities (BYPP) 20.95 are given above each branch in that order (Figure 1). Phylogenetic position and statistical support are noted in the tax- onomy section. 70 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) 92/--10.99 Setophoma pseudosacchari CBS 145373 100/100/1.00! Setophoma sacchari MFLUCC 12-0241 ‘ Setophoma sacchari \\F\LUCC 11-0154 100/100/1.00 Sefophoma antiqua C6596 | Setophoma endophytica \.C3297 Setophoma sensu lato 95/90/0.95 | Setophoma vernoniae CBS 137988 _ Setophoma chromolaenae CBS 135105 ~ --« Setophoma longinqua \.C'3482 soca ee 00 | ~Setophoma yunnanensis \.C6532 : Sefophoma yingyisheniae C3499 Elongaticollum hedychii MFLUCC 18 -1638 100/100/1.00 _' Elongaticollum hedychii MFLUCC 17-2653 Elongaticollum Elongaticollum hedychii NCYUCC 19-0286 WA aaaeen Neostagonosporella sichuanensis \V\F\UCC 18-1228 10080100 Neostagonosporelia sichuanensis WiF\U 18-1223 Neostagonosporella 7-/- | Neostagonosporella sichuanensis \V\F\LUCC 18-1231 Kwanghwaensis miscanthi -\U31017 Kwanghwaensis | | | Alloneottiosporina thailandica \\F\UCC 15-0576 Alloneottiosporina 100/100/1.00__100/100/1.00 Edenia gomezpompae JICC 34533 71/100/0.97 Edenia gomezpompae \\/PE| 3225 81/100/1.00 Setophoma terrestris CBS 335.29 Setophoma poaceicola \\F\UCC 16-0880 Setophoma sensu stricto Setophoma brachypodii CPC 32492 84/89/1.00° Neosulcatispora agaves CPC 26407 Neosulcatispora age Vrystaatia aloeicola CBS 135107 Viystaatia 72/--I-- Bhatiellae rosae \\FLUCC 17-0664 Bhatiellae Piniphoma wesendahlina CBS 145032 Piniphoma Paraleptosphaeria dryadis CBS 643.86 e Leptosphaeria doliolum CBS 505.75 Ouigroup (Leptosphaeriaceae) 85/--/1.00 Edenia 95/--/1.00 0.03 Figure |. Continued. Taxonomy Elongaticollum Tennakoon, C.H. Kuo & K.D. Hyde, gen. nov. Index Fungorum number: IF 557486 Facesoffungi number: FoF07849 Etymology. Refers to the fact that the pycnidia have elongated necks. Diagnosis. Saprobic on dead leaves of Hedychium coronarium J. Koenig. Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata pycnidial, solitary, superficial, dark brown to black, obpyriform, papillate. Neck elongate, dark brown, usually straight, but sometimes slightly curved. Conidiomatal wall composed of 4—5 layers of light brown cells, arranged in textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, aseptate, smooth, ampulliform, arising from the inner cell wall of the apex. Conidia oval to oblong, smooth and thin- walled, hyaline, aseptate, with 1—2-minute guttules. Type species. Elongaticollum hedychii Tennakoon, C.H. Kuo & K.D. Hyde. Elongaticollum hedychii Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov. Index Fungorum number: IF 557487 Facesoffungi number: FoF07850 Figure 2 Etymology. Name reflects the host Hedychium coronarium J. Koenig, from which the holotype was collected. Additions to Phaeosphaeriaceae (Pleosporales) igh Holotype. MFLU 18-2542. Diagnosis. Saprobic on dead leaves of Hedychium coronarium J. Koenig. Sexual morph: Undetermined. Asexual morph: Coelomycetous. Conidiomata 120-140 um high, 60-70 um diam., pycnidial, solitary, scattered, superficial, visible as small black spots on host surface, dark brown to black, obpyriform, papillate. Neck up to 80— 100 um long, 20-30 um diam., elongated, dark brown, usually straight, but some- times slightly curved. Conidiomatal wall 10-20 um wide, composed of 4—5 layers of light brown, thick-walled cells, arranged in textura angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 3-4 x 3—3.5 um (* = 3.6 x 3.2 um, n = 10), arising from the inner cell wall of the apex, hyaline, aseptate, smooth, ampulliform. Conidia 4—5 x 1.8—2.2 um (% = 4.6 x 2.1 um, n = 30), oval to oblong, smooth, thin- walled, hyaline, aseptate, with 1—2-minute guttules. Culture characteristics. Colonies on PDA reaching 30 mm diameter after 3 weeks at 20—25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin entire, colony from above: light brown to grey at the margin, dark brown at middle, dark brown to black at the center; reverse, light brown to yellowish at the margin, brown at middle, dark brown to black at the center; mycelium light brown to grey with tufts; not producing pigments in PDA. Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaves of Hedychium coronarium J. Koenig (Zingiberaceae), 15 August 2018 (23°27.514'N, 120°36.302'E), D.S. Tennakoon, TLF031-A (MFLU 18-2542, holotype), ex-type living culture (MFLUCC 18-1638 = NCYUCC 19-0163); ibid. 20 August 2018 (23°27.530'N, 120°36.314'E), TLF0O31-B (NCYU19-0139, paratype), living culture (NCYUCC19-0286); ibid. 25 August 2018 (23°27.512'N, 120°36.301'E), TLF031- C (NCYU19-0140, paratype), living culture (NCYUCC 19-0287). Notes. The genus Elongaticollum differs from other asexual morphs in Phaeospha- eriaceae in dark brown to black, superficial, obpyriform, pycnidial conidiomata with distinct elongate necks (80-100 um) and a globose base and oval to oblong, hyaline, aseptate conidia (Figure 2). Multi-gene phylogenetic analyses (LSU, SSU, ITS, tef1-«), show Elongaticollum strains constitute a highly supported independent lineage nested between Setophoma sensu lato and Neostagonosporella (97% ML, 80% MP, 1.00 BYPP, Figure 1). However, the asexual morph of Setophoma can be distinguished from Elonga- ticollum in having setose conidiomata without elongate necks and oblong to ellipsoidal conidia, whereas, Elongaticollum have conidiomata with distinct elongate necks and lacking setae and oval to oblong conidia (De Gruyter et al. 2010; Phookamsak et al. 2014). Despite some Setophoma species not having setae (i.e. S. antiqua, S. endophytica, and S. yunnanensis) (Liu et al. 2019), Elongaticollum species can be distinguished by its superficial conidiomata with elongate necks. The asexual morph of Neostagonosporella differs from Elongaticollum in having multiloculate conidiomata without distinct elongate necks and two types of conidia (macroconidia: subcylindrical to cylindrical, transversely multi-septate, hyaline and microconidia oval, ellipsoidal or long ellipsoidal, aseptate, hyaline), whereas Elongati- collum has uni-loculate conidiomata with distinct elongate necks and oval to oblong conidia (Figure 2, Yang et al. 2019). Z2 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Figure 2. Elongaticollum hedychii (MFLU 18-2542, holotype) a specimen b appearance of conidiomata on host € close up of conidiomata on host d vertical section through conidioma e, f squash mount of conidioma g conidioma wall h, i elongated conidiomatal necks j conidiogenous cells k conidia I, m ger- minated conidia n colony from below 0 colony from above p, q pycnidia formed on PDA. Scale bars: 100 um (€), 50 pm (d=h), 10 pm (g), 30 pm (i), 3 um (j-m), 100 pm (p, q). Phylogenetic investigations herein provide insights into the taxonomy of Setopho- ma as well (Figure 1). Two major clades of Setophoma are recovered (Setophoma sensu stricto and Setophoma sensu lato). The Setophoma sensu stricto clade includes S. brachy- podii, S. poaceicola and S. terrestris (type species). Setophoma sensu lato comprises S. antiqua, S. chromolaenae, S. endophytica, S. pseudosacchari, S. sacchari, S. vernoniae, S. yingyisheniae and S. yunnanensis (Figure 1). Elongaticollum, differs from Setophoma sen- su lato in having distinct superficial, obpyriform, pycnidial conidiomata with a globose base and distinct elongated necks (Figure 2, Liu et al. 2019). Further work is needed to resolve relationships between Setophoma sensu stricto and Setophoma sensu lato. Ophiosphaerella Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 401 (1909) Notes. Ophiosphaerella was introduced by Spegazzini (1909) to accommodate O. graminicola Speg. as the type species. The species of this genus are characterized by papillate ascomata bearing fissitunicate, cylindrical asci frequently narrower near the Additions to Phaeosphaeriaceae (Pleosporales) 72 base, with a short furcate pedicel and filamentous, pale brown, multi-septate ascospores without swollen cells or separating into part spores. Barr (1987) placed Ophiosphaerella in Phaeosphaeriaceae and this was confirmed by Zhang et al. (2009, 2012) and Hyde et al. (2013) based on molecular phylogeny. Most Ophiosphaerella species are often found as pathogens or saprobes worldwide on Poaceae and Cyperaceae (Camara et al. 2000). Currently, twelve Ophiosphaerella species are listed in Index Fungorum (2020). In this study, we introduce Ophiosphaerella taiwanensis from Agave tequilana F.A.C. Weber (Asparagaceae) as a new species. Ophiosphaerella taiwanensis Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov. Index Fungorum number: IF 557488 Facesoffungi number: FoF07851 Figure 3 Etymology. Named after Taiwan, where this fungus was collected. Holotype. MFLU 18-2534. Diagnosis. Saprobic on dead leaf of Agave tequilana F.A.C. Weber (Asparagaceae). Sexual morph: Ascomata 270-310 um high, 220-260 pm diam., solitary, scattered, immersed to slightly erumpent through host tissue with papilla, visible as raised, small black dots in host surface, globose to subglobose, uniloculate, glabrous, dark brown to black, ostiole central, periphysate. Peridium 20-25 um wide, thick-walled, of equal thickness, composed of 6—7 layers of small, flattened, brown to dark brown pseudo- parenchymatous cells, hyaline towards the inside, arranged in a textura angularis, fusing and indistinguishable from the host tissues. Hamathecium of 1.5—2.5 um wide, cellular, septate, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. Asci 115-140 x 8.5—10 pm (* = 121.6 x 9.2 um, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedi- cellate, apically rounded, with a well-developed ocular chamber. Ascospores 110-132 x 2.2—2.7 um (« = 117.2 x 2.4 um, n = 20), fasciculate, parallel, scolecosporous, fili- form, 12—13-septate, narrowing towards ends, pale brown to brown, smooth-walled. Asexual morph: Undetermined. Culture characteristics. Colonies on PDA reaching 25 mm diameter after 3 weeks at 20—25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin well-defined, colony from above: gray to light brown at the margin, gray to cream at the center; reverse, gray to light brown at the margin, dark brown to black at the center; mycelium whitish gray with tufting; not producing pigments in PDA. Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf of Agave tequilana RA.C. Weber (Asparagaceae), 15 August 2018 (23°27.520'N, 120°36.310'E), D.S. Tennakoon, TLFO16 (MFLU 18-2534, holotype); ibid. (NCYU19-0131, isotype), ex-type living culture, NCYUCC 19-0152. Notes. The scolecosporous specimen was collected from dead leaves of Agave te- quilana (Asparagaceae) in Taiwan. The multi-gene phylogenetic analysis (Figure 1) 74 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) oC , er rere Lut See neers are = re: Sere errs prererg ee Figure 3. Ophiosphaerella taiwanensis (MFLU 18-2534, holotype) a, b appearance of ascomata on host C close-up of ascomata d vertical section through ascoma € apex of ascoma f peridium g pseudoparaphyses h-j asci k, | ascospores m germinated ascospore in PDA n colony from above 0 colony from below. Scale bars: 100 um (d, e), 15 um (f), 50 um (g—m). shows our strain (Ophiosphaerella taiwanensis, NCYUCC 19-0152), cluster with other Ophiosphaerella species, in particular with close affinity to Ophiosphaerella agrostidis with high bootstrap support (88% ML, 70% MP, 0.99 BYPP, Figure 1). Morphologi- cal characters of our collection (NCYUCC 19-0152) differ from Ophiosphaerella agros- tidis in having periphyses in the ostiole, 12—13 septate ascospores and host occurrence (Asparagaceae). Ophiosphaerella agrostidis was introduced by Camara et al. (2000) on Agrostis palustris (Poaceae), and is lacking periphyses, comprises 15-septate ascospores (Phookamsak et al. 2014). A comparison of the 619 nucleotides across the tefl-« gene region of Ophiosphaerella taiwanensis and O. agrostidis (MFLUCC 11-0152) reveals 17 base pair differences (2.74%). Phaeosphaeriopsis M.P.S. Camara, M.E. Palm & A.W. Ramaley, Mycol. Res. 107(5): 519 (2003) Notes. The genus Phaeosphaeriopsis was introduced by Camara et al. (2003) to ac- commodate Paraphaeosphaeria-like taxa, viz. P. agavensis A.W. Ramaley, M.E. Palm & Additions to Phaeosphaeriaceae (Pleosporales) 2) M.E. Barr, P. glaucopunctata (Grev.) Shoemaker & C.E. Babc., P. nolinae A.W. Rama- ley, P. obtusispora (Speg.) O.E. Erikss, Phaeosphaeriopsis amblyspora A. W. Ramaley and Phaeosphaeriopsis amblyspora A. W. Ramaley. The genus is typified by P. glaucopunctata and characterized by having immersed, sub-epidermal, globose to subglobose to pyri- form ascomata, cylindric asci and septate, punctate or verrucose ascospores (Camara et al. 2003; Phookamsak et al. 2014; Thambugala et al. 2014; Tibpromma et al. 2017). Currently, 17 Phaeosphaeriopsis species are accepted in Index Fungorum (2020). In this paper, Phaeosphaeriopsis beaucarneae is introduced from Beaucarnea recurvata (As- paragaceae) as a new species and the sexual/asexual morph connection between strains isolated from the natural habitat was established based on molecular sequence data. Phaeosphaeriopsis beaucarneae Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov. Index Fungorum number: IF 557489 Facesoffungi number: FoF07852 Figures 4, 5 Etymology. Name reflects the host Beaucarnea recurvata Lem., from which the holo- type was collected. Holotype. MFLU 18-2586. Diagnosis. Saprobic on dead leaf of Beaucarnea recurvata Lem. (Asparagaceae). Sexual morph: Ascomata 160-200 um high, 220-250 um diam., scattered, solitary, gregarious, coriaceous, immersed to semi-immersed, slightly raised, erumpent, visible as black spots on host surface, uniloculate, dark brown to black, globose to subglobose, ostiolate. Ostiole central, papillate. Peridium 20-30 um wide, thick-walled, of equal thickness, composed of 4—5 layers of dark brown to brown, thick-walled, pseudo- parenchymatous cells of textura angularis. Hamathecium of 1.5—2.5 um wide, cellular, septate, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. Asci 80-90 x 9-10 um (* = 86.5 x 9.6 um, n = 25), 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedi- cellate, apically rounded, with a well-developed ocular chamber. Ascospores 20-25 x 5.5-7 um (« = 22.6 x 6.2 um, n = 20), overlapping 1—2-seriate, oblong to cylindrical, yellowish to light brown, slightly narrowing towards the end cells, mostly 5-septate, constricted at the septa, enlarged at the 4" cell from above, verruculose, straight to curved, lacking a mucilaginous sheath. Asexual morph: Conidiomata 180-200 um high, 140-160 pm diam., pycnidial, solitary, immersed to erumpent, small black spots on host surface, globose to subglobose with centrally placed ostiole. Conidiomatal wall 28-34 um wide, composed of 6-7 layers of dark brown cells, arranged in textu- ra angularis. Conidiophores reduced to conidiogenous cells. Conidiogenous cells 3-4 x 2.6—3.1 um, holoblastic, phialidic, single, discrete, sometimes integrated, ampulliform or cylindric-clavate, hyaline, arising from basal stratum. Conidia 6.8-7.4 x 3-4 um (x= 7.1 x 3.4 um, n = 30), 1-celled, globose to subglobose, initially hyaline, becoming brown to dark brown, aseptate, rough-walled. 76 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) a BENE OD GREaeNN iss S & SeR\Y ar Figure 4. Phacosphaeriopsis beaucarneae (MFLU 18-2586, holotype) a appearance of ascomata on host b close up of ascoma € vertical section through ascoma d peridium e pseudoparaphyses f=i asci j—n as- cospores O germinated ascospore in PDA p colony from above q colony from below. Scale bars: 100 um (c), 15 um (d), 50 um (e-i), 10 um (j-o). Culture characteristics. Colonies on PDA reaching 27 mm diameter after 3 weeks at 20—25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin irregular, colony from above: light brown at the margin, white to cream at the center; reverse, yellow to light brown at the margin, light brown to brown at the center; mycelium white to cream with tufting; not producing pigments in PDA. Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf of Beaucarnea recurvata Lem. (Asparagaceae), 21 July 2018 (23°27.514'N, 120°36.302'E), D.S. Tennakoon, SV027 (MFLU 18-2586, holotype); ibid. (NCYU19-0184, isotype), ex-type living culture, NCYUCC 19-0106; ibid., Dahu forest, dead leaf of Beaucarnea recurvata Lem. (Asparagaceae), 25 July 2018 (23°26.534'N, 120°36.220'E), D.S. Ten- nakoon, SV028 (MFLU 18-2587, paratype); living culture, NCYUCC 19-0107. Notes. Phaeosphaeriopsis beaucarneae is similar to other Phaeosphaeriopsis spe- cies in having scattered, semi-immersed to erumpent, globose to subglobose, ostio- late ascomata and cylindrical to clavate asci and light brown, verrucose ascospores (Phookamsak et al. 2014; Thambugala et al. 2014; Hyde et al. 2020). According to Additions to Phaeosphaeriaceae (Pleosporales) TF Figure 5. Phaecosphaeriopsis beaucarneae (MFLU 18-2586, paratype) a appearance of conidiomata on host b close up of conidiomata € vertical section through conidioma d conidiomatal wall e, f conid- iogenous cells and developing conidia g—i conidia j germinated conidium in PDA kK colony from above I colony from below. Scale bars: 100 xm (c), 20 pm (d), 3 um (e, f), 5 um (g-j). the present multi-gene phylogenetic analyses (Figure 1), Phaeosphaeriopsis beaucarneae is grouped with other Phaeosphaeriopsis species, in particularly closely to P. grevilleae (CBS 145369) with high statistical support (70% ML, 75% MP, 0.99 BYPP, Figure 1). The asexual morph of P grevilleae was isolated from leaves of Grevillea sp. (Proteaceae) and introduced by Marin-Felix et al. (2019). Phaeosphaeriopsis beaucarneae differs from P. grevilleae in having larger conidia (6.8—7.4 x 3-4 um), whereas P. grevilleae has com- paratively smaller conidia (5 x 3.5 um). A comparison of the 516 nucleotides across the ITS (+5.8S rDNA) gene region of Phaeosphaeriopsis beaucarneae and P. grevilleae (CBS 145369) revealed 16 base pair differences (3.10%). In addition, we compared our new taxon with P. grevilleae based on base pair differences in the ef/-« gene region. We found a total of 19 base pair differences (3.06%) across 619 nucleotides. Recent studies have revealed that Phaeosphaeriopsis is a species rich genus and numerous Phaeosphaeriopsis species have been described during the last few years (Thambugala et al. 2014; Tibpromma et al. 2017; Marin-Felix et al. 2019; Al-Jaradi et al. 2020; Hyde et al. 2020). With this study, the number of Phaeosphaeriopsis spe- cies increases to 18. 78 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Neosetophoma Gruyter, Aveskamp & Verkley, Mycologia 102(5): 1075 (2010) Notes. Neosetophoma was introduced by de Gruyter et al. (2010), typified by NV. sama- rarum (Desm.) Gruyter, Aveskamp. & Verkley. Species of Neosetophoma are character- ized by globose to irregular conidiomata, with papillate ostioles, and yellowish conidia that are attenuate at one end (De Gruyter et al. 2010; Liu et al. 2015). Tibpromma et al. (2017) introduced Neosetophoma garethjonesii Tibpromma, E.B.G. Jones & K.D. Hyde as the first report of the sexual morph of Neosetophoma. Neosetophoma species have a diverse distribution as saprobes, endophytes, plant pathogens and soil fungi (Phookamsak et al. 2014; Hernandez-Restrepo et al. 2016; Karunarathna et al. 2017; Tibpromma et al. 2017; Wanasinghe et al. 2018). Currently, 19 Neosetophoma species are accepted in Index Fungorum (2020). In this study, we found Neosetophoma poacei- cola Goonas., Thambug. & K.D. Hyde from dead leaves of Musa acuminata Colla in Taiwan. This is the first Neosetophoma species recorded from the plant family Musaceae. Neosetophoma poaceicola Goonas., Thambug. & K.D. Hyde. Mycosphere 8: 742 (2017) Index Fungorum number: IF552974 Facesoffungi number: FoF00262 Figure 6 Diagnosis. Saprobic on dead leaf petioles of Musa acuminata Colla (Musaceae). Sex- ual morph: Ascomata 70-100 um high, 90-130 um diam., solitary, gregarious, co- riaceous, immersed to semi-immersed, slightly raised, visible as black spots on host surface, uni-loculate, dark brown to black, globose to ovoid. Peridium 15—20 um wide, thick-walled, of equal thickness, composed of several layers of dark brown to brown, pseudoparenchymatous cells of textura angularis. Hamathecium of 1-2 ym wide, cel- lular, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. Asci 60-80 x 7—8 um (* = 70.6 x 7.6 um, n = 30), 8-spored, bitunicate, fissitunicate, cylindric-clavate with a short, rounded pedicel, api- cally rounded. Ascospores 20-30 x 3-4 um (X% = 25.5 x 3.7 um, n = 40), overlapping |—2-seriate, hyaline, fusiform, with acute ends, 1-septate, 3-4 eu-septate, cell near the septum slightly larger, slightly constricted at the septum, straight to curved, smooth- walled, guttulate. Asexual morph: Undetermined. Culture characteristics. Colonies on PDA reaching 30 mm diameter after 3 weeks at 20-25 °C, colonies medium sparse, circular, flat, surface slightly rough with entire edge, margin well-defined, colony from above: yellow to light brown at the margin, brown at the center; reverse, yellow to light brown at the margin, dark brown at the cent- er; mycelium light brown to whitish grey with tufting; not producing pigments in PDA. Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf petiole of Musa acuminata Colla (Musaceae), 21 July 2018 (23°27.530'N, 120°36.340'E), D.S. Tennakoon, SV049 (MFLU 18-2597, new host record), living culture, MFLUCC 18-1632, NCYUCC 19-0119. Additions to Phaeosphaeriaceae (Pleosporales) 7 Figure 6. Neosetophoma poaceicola (MFLU 18-2597, new host record) a appearance of ascomata on host b close up of ascomata € vertical section through ascoma d peridium e pseudoparaphyses f-h asci irk as- cospores | germinated ascospore in PDA m colony from above n colony from below. Scale bars: 50 um (c), 20 pm (d), 30 pm (eh), 15 pm (i+). Notes. As morphological characters (immersed to semi-immersed ascomata, cylin- dric-clavate, apically rounded asci with short rounded pedicel and hyaline, fusiform, l-septate ascospores) largely overlap with those of Neosetophoma poaceicola (MFLUCC 16-0886), we report our collection (MFLUCC 18-1632) as a new host record of NV. poa- ceicola from dead leaves of Musa acuminata (Musaceae) in Taiwan. Combined multi-gene (LSU, SSU, ITS and tef7-«) based phylogenies also showed that our collection clustered with Neosetophoma poaceicola (MFLUCC 16-0886), with high bootstrap support (100% ML, 100% MP, 1.00 BYPP, Figure 1). Neosetophoma poaceicola was introduced by Tham- bugala et al. (2017) from dead leaves of grass species in Thailand. However, our collection slightly differs from Neosetophoma poaceicola (MFLUCC 16-0886) in having compara- tively slightly larger ascospores (20—30 x 3-4 pm, versus 18.5—22.5 x 3.5—5 um). Neosetophoma species have been recorded from various host families, viz. Brassi- caceae, Caprifoliaceae, Iridaceae, Malvaceae, Ranunculaceae, Salicaceae, but most are reported from Poaceae (Phookamsak et al. 2014; Karunarathna et al. 2017; Tibpromma et al. 2017, Wanasinghe et al. 2018; Marin-Felix et al. 2019). Interestingly, this is the first Neosetophoma species record (MFLU 18-2597) from the plant family Musaceae. 80 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Discussion The taxonomy of Phaeosphaeriaceae has been subjected to several changes in recent years. Traditionally, morphology-based identification was the main means for identi- fying Phaeosphaeriaceae species (Barr 1979, 1992; Tomilin 1993). However, species identification has been revolutionized by the application of molecular based approach- es incorporating DNA sequence data in Phaeosphaeriaceae (Phookamsak et al. 2014, 2017; Tennakoon et al. 2016; Wanasinghe et al. 2018; Bakhshi et al. 2019; Chethana et al. 2020; Hyde et al. 2020). Phaeosphaeriaceae species are adapted to a wide range of ecological environments and are present in soils, fresh and marine habitats and cause infections in humans (Yuan 1994; Phookamsak et al. 2014, 2017; Ahmed et al. 2017; Maharachchikumbura et al. 2019; Valenzuela-Lopez et al. 2019). Members of the Phaeosphaeriaceae have also been recorded from both temperate and tropical countries (i.e. Austria, Belgium, Bulgaria, Canada, China, Germany, Italy, Japan, Nor- way, Poland, Thailand, Sweden, Switzerland) and from different host families (i. e. Ac- oraceae, Arecaceae, Cyperaceae, Asparagaceae, Brassicaceae, Fabaceae, Poaceae, Maran- taceae) (Shoemaker and Babcock 1989; Phookamsak et al. 2014, 2019; Wanasinghe et al. 2018; Maharachchikumbura et al. 2019; Farr and Rossman 2020). Due to their cosmopolitan distribution, in the last few years, many researchers have paid significant attention to the Phaeosphaeriaceae (Phookamsak et al. 2014, 2019; Tennakoon et al. 2016; Wanasinghe et al. 2018; Bakhshi et al. 2019; Hyde et al. 2020). The fungi that decay leaf litter are highly diverse and may be host-specific (Pa- rungao et al. 2002). Several studies have examined the succession of leaf degrading communities and found unique sets of species on different types of litter (Promput- tha et al. 2002, 2017; Duong et al. 2008). Additional ecological studies are therefore needed to establish whether these fungi are generalists or specialists. This study pro- vides evidence to indicate the fungal diversity in leaf litter, even within a single family, Phaeosphaeriaceae. Additional work is necessary to identify if the newly described species are host specific. Acknowledgments The authors would like to thank T.K. Goh for his valuable suggestions and help. Shaun Pennycook is thanked for checking species names. This research work was partially supported by Chiang Mai University and K.D. Hyde thanks Chiang Mai University for the award of Visiting Professorship. He also thanks the Thailand Research Fund for the Grant No. RDG613001, entitled “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion”. D.N. Wanasinghe would like to thank the CAS President's International Fellowship Initiative (PIF) for funding his postdoctoral research (number 2019PC0008), the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants: 41761144055, 41771063 and Y4ZK111B01. Wanasinghe also thanks the 64" batch of China Postdoctoral Science Foundation (grant no: Y913083271). Additions to Phaeosphaeriaceae (Pleosporales) 81 References Al-Jaradi AJ, Maharachchikumbura SS, Al-Sadi AM (2020) Phaeosphaeriopsis omaniana (Phaeosphaeriaceae, Pleosporales), a novel fungus from Oman. Phytotaxa 436: 187-192. https://doi.org/10.11646/phytotaxa.436.2.8 Ahmed SA, Hofmueller W, Seibold M, de Hoog GS, Harak H, Tammer I, Van Diepeningen AD, Behrens-Baumann W (2017) Tintelnotia, a new genus in Phaeosphaeriaceae harbour- ing agents of cornea and nail infections in humans. Mycoses 60: 244-253. https://doi. org/10.1111/myc.12588 Bakhshi M, Arzanlou M, Groenewald JZ, Quaedvlieg W, Crous PW (2019) Parastagonosporella fallopiae gen. et sp. nov. (Phaeosphaeriaceae) on Fallopia convolvulus from Iran. Mycologi- cal Progress 18: 203-214. https://doi.org/10.1007/s11557-018-1428-z Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L (2018) The role of microbial community in the decomposition of leaf litter and deadwood. Ap- plied soil ecology 126: 75-84. https://doi.org/10.1016/j.apsoil.2018.02.017 Barr ME (1979) A classification of Loculoascomycetes. Mycologia 71: 935-957. https://doi.or g/10.1080/00275514.1979.12021099 Barr ME (1987) New taxa and combinations in the Loculoascomycetes. Mycotaxon 29: 501-505. Barr ME (1992) Additions to and notes on the Phaeosphaeriaceae (Pleosporales, Loculoasco- mycetes). Mycotaxon 43: 371-400. Berg B, McClaugherty C (2003) Plant Litter. Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, Berlin Heidelberg, New York. Berg B, McClaugherty C (2008) Plant Litter. Decomposition, Humus Formation, Carbon Sequestration (2™ ed.). Springer. https://doi.org/10.1007/978-3-540-74923-3 Camara MP, O’Neill NR, Berkum PV, Dernoeden PH, Palm ME (2000) Ophiosphaerella agros- tis sp. nov. and its relationship to other species of Ophiosphaerella. Mycologia 92: 317-325. https://doi.org/10.1080/00275514.2000.12061162 Camara MPS, Ramaley AW, Castlebury LA, Palm ME (2003) Neophaeosphaeria and Phaeospha- eriopsis, segregates of Paraphaeosphaeria. Mycological Research 107: 516-522. https://doi. org/10.1017/S0953756203007731 Chaiwan N, Wanasinghe DN, Camporesi E, Tibpromma S, Boonmee S, Lumyong S, Hyde KD (2019) Molecular taxonomy reveals the sexual morph of Nodulosphaeria digitalis in Phaeosphaeriaceae from Campanula trachelium in Italy. Phytotaxa 400: 1-13. https://doi. org/10.11646/phytotaxa.400.1.1 Chethana KW, Jayawardena RS, Hyde KD (2020) Hurdles in fungal taxonomy: Effectiveness of recent methods in discriminating taxa. Megataxa 1: 114-122. https://doi.org/10.11646/ megataxa.1.2.2 De Gruyter J, Woudenberg JH, Aveskamp MM, Verkley GJ, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia 102: 1066-1081. https://doi.org/10.3852/09-240 Devadatha B, Mehta N, Wanasinghe DN, Baghela A, Sarma VV (2019) Vittaliana mangrovei gen. noy, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. Cryptogamie Mycologie 40: 117-132. https://doi. org/10.5252/cryptogamiemycologie2019v40a7 82 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Duong LM, McKenzie EHC, Lumyong S, Hyde KD (2008) Fungal succession on senescent leaves of Castanopsis diversifolia in Doi Suthep-Pui National Park, Thailand. Fungal Diver- sity 30: 23-36. http://cmuir.cmu.ac.th/jspui/handle/6653943832/60073 Farr DF, Rossman AY (2020) Fungal databases, Systematic mycology and microbiology labora- tory, ARS, USDA. [Retrieved April 10, 2020] http://nt.ars-grin.gov/fungaldatabases Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis pro- gram for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. Hernandez-Restrepo M, Schumacher RK, Wingfield MJ, Ishtiag A, Cai L, Duong TA, Edwards J, Gene J, Groenewald JZ, Sana J, Khalid AN (2016) Fungal systematics and evolution: FUSE 2. Sydowia 68: 193—230. https://doi.org/10.12905/0380.sydowia68-20 16-0193 Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie HCE, Sarma VV, Boon- mee S, Liicking R, Pem D, Bhat JD, Liu N, Tennakoon DS, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe I, Tibpromma S, Jayasiri SC, Sandamali D, Jaya- wardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo Z, Tian Q, Phukhamsakda C, Thambugala KM, Dai D, Chethana TKW, Ertz D, Doilom M, Liu JK, Pérez-Ortega S, Suija A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, de Silva NI, Thiyagaraja V, Zhang H, Bezerra JDP, Miranda-Gonzales R, Aptroot A, Kashiwadani H, Harishchan- dra D, Aluthmuhandiram JVS, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schumm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Samara- koon MC, Suetrong S, Chaiwan N, Dayarathne MC, Jing Y, Rathnayaka AR, Bhunjun CS, Xu J, Zheng J, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes. Fungal diversity. [In press] Huelsenbeck JP, Ronqvist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bio- informatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 Hyde KD, Jones EBG, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, Diederich P, Dissanayake A, Doilom M, Doveri EK, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Liicking R, Monka J, Muggia L, Nelsen MP, Pang KL, Phookamsak R, Senanayake IC, Shearer CA, Suetrong S, Tanaka K, Thambugala KM, Wijayawardene NN, Wikee S, Wu HX, Zhang Y, Begofa AH, Alias SA, Aptroot A, Bahkali AH, Bezerra JL, Bhat DJ, Camporesi E, Chukea E, Gueidan C, Hawksworth DL, Hirayama K, Hoog SD, Kang JK, Knudsen K, Li WJ, Li XH, Liu ZY, Mapook A, Mckenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schumm F, Taylor JE, Tian Q, Tibpromma S, Wanasinghe DN, Wang Y, Xu JC, Yacharoen S, Yan JY, Zang M (2013) Families of Dothideomycetes. Fungal Diversity 63: 1-313. https://doi. org/10.1007/s13225-013-0263-4 Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonardi M, Lee HB, Mun HY, Houbraken J, Nguyen TTT, Jeon SJ, Frisvad JC, Dhanushka N, Wanasinghe DN, Luiicking R, Aptroot A, Caceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AWC, Bart B, Ran- drianjohany E, Hofstetter V, Gibertoni TB, da Silva Soares AM, Plautz Jr HL, Sotao HMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhaes OMC, Bun- dhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DE, Samarakoon Additions to Phaeosphaeriaceae (Pleosporales) 83 MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayar- athne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mesi¢ A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norphanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JE Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Réblova M, Fournier J, Nekvindova J, do Nascimento Barbosa R, dos Santos JEF, de Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkaléec Z, Liang J, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC (2019) Fungal diversity notes 1036-1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1-242. https://doi.org/10.1007/s13225-019-00429-2 Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei DP, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunar- athna A, Ekanayaka AH, Bao DF, Li JE, Samarakoon MC, Chaiwan N, Lin CG, Phut- thacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukham- sakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang SK, Thiyagaraja V, Lu YZ, Jayawardena LS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pliegler WP, Horvath E, Imre A, Alves AL, San- tos ACDS, Tiago RV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu JC, Sheng J (2020) Fungal diversity notes 1151-1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100: 1-273. https://doi.org/10.1007/s13225-020-00439-5 Index Fungorum (2020) Index Fungorum. http://www.indexfungorum.org/names/Names.asp [accessed 6 April 2020] Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Ne- jhad M, Nilsson H, Pang KA, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero Al, Etayo J, Selcuk E Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wa- hab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) ‘The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3-18. https://doi.org/10.1007/s13225-015-0351-8 Johnson EA, Catley KM (2002) Life in the Leaf Litter. American Museum of Natural His- tory, New York. Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetrong S, Dayarathne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AH, Gleason FH, Norphanphoun C (2019) An online resource for marine fungi. Fungal Diversity 96: 347-433. https://doi.org/10.1007/s13225-019-00426-5 84 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Karunarathna A, Papizadeh, M, Senanayake IC, Jeewon R, Phookamsak R, Goonasekara ID, Wanasinghe DN, Wijayawardene NN, Amoozegar MA, Shahzadeh Fazeli SA, Camporesi E (2017) Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connec- tion. Mycosphere 8: 1818-1834. https://doi.org/10.5943/mycosphere/8/10/8 Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: im- provements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010 Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy Ecology and Environment 2: 236-249. https://doi.org/10.1007/s40974-017-0064-9 Liu E Wang J, Li H, Wang W, Cai L (2019) Setophoma spp. on Camellia sinensis. Fungal Sys- tematics and Evolution 4: 43-57. https://doi.org/10.3114/fuse.2019.04.05 Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dis- sanayake AJ, Doilom M, D’souza MJ, Fan XL, Goonasekara ID, Hirayama K, Hongsanan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Persoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe DN, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamc¢ik S, Bahkali AH, Boonyuen N, Bulgakov T; Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstet- ter V, Kang JC, Lewis D, Li XH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal diversity notes 1-110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1-197. https://doi.org/10.1007/s13225-015-0324-y Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DE, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JE Su HY (2019) Freshwater Sordari- omycetes. Fungal Diversity 99: 451-660. https://doi.org/10.1007/s13225-019-00438-1 Maharachchikumbura SSN, Ariyawansa HA, Wanasinghe DN, Dayarathne MC, Al-Saady NA, Al-Sadi AM (2019) Phylogenetic classification and generic delineation of Hydeomyces desertipleosporoides gen. et sp. nov., (Phaeosphaeriaceae) from Jebel Akhdar Mountain in Oman. Phytotaxa 391: 28-38. https://doi.org/10.11646/phytotaxa.391.1.2 Mapook A, Hyde KD, McKenzie EHC, Jones EBG, Bhat DJ, Jeewon R, Stadler M, Samara- koon MC, Malaithong M, Tanunchai B (2020) Taxonomic and phylogenetic contribu- tions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity. [In press] https://doi.org/10.1007/s13225-020-00444-8 Marin-Felix Y, Hernandez-Restrepo M, Iturrieta-Gonzalez I, Garcia D, Carnegie AJ, Chee- wangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen EK Lombard L (2019) Genera of phytopathogenic fungi: GOPHY 3. Studies in Mycology 94: 1-124. https://doi. org/10.1016/j.simyco.2018.04.002 Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Infer- ence of Large Phylogenetic Trees. SC10 Workshop on Gateway Computing Environments (GCE10). https://doi.org/10.1109/GCE.2010.5676129 Additions to Phaeosphaeriaceae (Pleosporales) 85 Mlambo MC, Paavola R, Fritze H, Louhi P, Muotka T (2019) Leaf litter decomposition and decomposer communities in streams affected by intensive forest biomass removal. Ecologi- cal indicators 101: 364-372. https://doi.org/10.1016/j.ecolind.2019.01.035 Parungao MM, Fryar SC, Hyde KD (2002) Diversity of fungi on rainforest litter in North Queensland, Australia. Biodiversity & Conservation 11: 1185-1194. https://doi. org/10.1023/A:1016089220042 Phookamsak R, Liu Jk, McKenzie EHC, Manamgoda DS, Ariyawansa HA, Thambugala KM, Dai DQ, Camporesi E, Chukeatirote E, Wijayawardene NN, Bahkali AH, Mortimer PE, Xu JC, Hyde KD (2014) Revision of Phaeosphaeriaceae. Fungal Diversity 68: 159-238. https://doi.org/10.1007/s13225-014-0308-3 Phookamsak R, Wanasinghe DN, Hongsanan S, Phukhamsakda C, Huang SK, Tennakoon DS, Norphanphoun C, Camporesi E, Bulgakov TS, Promputtha I, Mortimer PE (2017) Towards a natural classification of ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeoshaeriaceae (Ple- osporales). Fungal Diversity 87: 299-339. https://doi.org/10.1007/s13225-017-0393-1 Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBJ, Maharachchikumbura SSN, Ras- pé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL,Ghosh A, Karunarathna A, Mesi¢é A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kusan Cano J, Gené J, LiJ, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Duefas M, Jadan M, Martin MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matocec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK,Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkaléec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov T, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J (2019) Fungal diversity notes 929-1036: taxonomic and phylo- genetic contributions on genera and species of fungal taxa. Fungal Diversity 95: 1-273. https://doi.org/10.1007/s13225-019-00421-w Pointing SB, Pelling AL, Smith GJD, Hyde KD (2005) Screening of basidiomycetes and xy- lariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Re- search 109: 115-124. https://doi.org/10.1017/S0953756204001376 Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinfor- matics 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817 Promputtha I, Lumyong S, Lumyong P, McKenzie EC, Hyde KD (2002) Fungal succession on senescent leaves of Manglietia garrettii in Doi Suthep-Pui National Park, northern Thai- land. Fungal Diversity 10: 89-100. Promputtha I, Mckenzie EH, Tennakoon DS, Lumyong S, Hyde KD (2017) Succession and natural occurrence of saprobic fungi on leaves of Magnolia liliifera in a tropical forest. Cryptogamie Mycologie 38: 213-225. https://doi.org/10.7872/crym/v38.iss2.2017.213 86 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, Hofrichter M, Kriiger D, Buscot F (2016) Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology 25: 4059-4074. https://doi.org/10.1111/mec.13739 Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/ [accessed 10 March 2020] Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new meth- od of phylogenetic inference. Journal of Molecular Evolution 43: 304-311. https://doi. org/10.1007/BF02338839 Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625-634. https://doi. org/10.1016/S0953-7562(09)80409-7 Rehner S (2001) Primers for Elongation Factor 1-« (EF1-a). http://ocid. NACSE.ORG/re- search/deephyphae/EF 1 primer.pdf Robertson GP, Paul EA (1999) Decomposition and soil organic matter dynamics. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (Eds) Methods of Ecosystem Science. Springer, New York, 104-116. https://doi.org/10.1007/978-1-4612-1224-9_8 Shoemaker RA, Babcock CE (1989) Phaeosphaeria. Canadian Journal of Botany 67: 1500- 1599. https://doi.org/10.1139/b89-199 Spegazzini C (1909) Mycetes Argentinenses. Series IV. Anales del Museo Nacional de Historia Natural Buenos Aires. Ser. 3, 12: 257-458. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic biology 57: 758-771. https://doi.org/10.1080/10635 150802429642 Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformat- ics/btu033 Swift MJ, Heal OW, Anderson MM (1979) Decomposition in Terrestrial Ecosystems. Black- well Scientific Publications, Oxford. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland. Tennakoon DS, Hyde KD, Phookamsak R, Wanasinghe DN, Camporesi E, Promputtha I (2016) Taxonomy and phylogeny of Juncaceicola gen. nov.(Phaeosphaeriaceae, Pleospori- nae, Pleosporales). Cryptogamie Mycologie 37: 135-156. https://doi.org/10.7872/crym/ v37.iss2.2016.135 Tennakoon DS, Jeewon R, Gentekaki E, Kuo CH. Hyde KD (2019) Multi-gene phylogeny and morphotaxonomy of Phaeosphaeria ampeli sp. nov. from Ficus ampelas and a new tre- cord of P. musae from Roystonea regia. Phytotaxa 406: 111-128. https://doi.org/10.11646/ phytotaxa.406.2.3 Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie E, Camporesi E, Bulgakov TS, Doilom M, Santiago AM, Das K, Manimo- han P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang J, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KN, Latha KP, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon D, Li J, Da- Additions to Phaeosphaeriaceae (Pleosporales) 87 yarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KW, Luo Z, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Ottoni A, MeSi¢c A, Dutta AK, Souza CA, Richter C, Lin C, Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, Silva GA, Plautz HL, Ariyawansa HA, Lee HS, Kuan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Miksik M, Sa- marakoon MA, Wijayawardene NN, Kim NK, Matoéec N, Singh PN, Tian Q, Bhatt RP, Oliveira RJ, Tulloss RE, Aamir S, Kaewchai S$, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandyopadhyay TK, Svetasheva TY, Nguyen TT, Antonin V, Li W, Wang Y, Indoliya Y, Tkaléec Z, Elgorban AM, Bahkali AH, Tang A, Su H, Zhang H, Promputtha I, Luangsa-Ard J, Xu J, Yan J, Kang JC, Stadler M, Mortimer PE, Chomnunti P, Zhao Q, Phillips AJ, Nontachaiyapoom S, Wen T, Karunarathna SC (2017) Fungal diversity notes 491—602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1-261. https://doi.org/10.1007/s13225-017-0378-0 Thambugala KM, Camporesi E, Ariyawansa HA, Phookamsak R, Liu ZY, Hyde KD (2014) Phylogeny and morphology of Phaeosphaeriopsis triseptata sp. nov., and Phaeosphaeriopsis glaucopunctata. Phytotaxa 176: 238-250. https://doi.org/10.11646/phytotaxa.176.1.23 Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, Phukhamsakda C, Ariyawansa HA, Goonasekara ID, Phookamsak R, Dissanayake A, Tennakoon DS, Tibprom- ma S, Chen YY, Liu ZY, Hyde KD (2017) Mycosphere notes 1-50: Grass (Poaceae) inhabit- ing Dothideomycetes. Mycosphere 8: 697-796. https://doi.org/10.5943/mycosphere/8/4/13 Tomilin BA (1993) New species of Loculoascomycetes (fam. Phaeosphaeriaceae Barr.). Novosti Sistematiki Nizshikh Rastenii 29: 69-73. Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro J, Stchigel AM (2017) Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. Journal of clinical microbiology 55: 552-567. https://doi.org/10.1128/ JCM.02221-16 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically ampli- fied ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238- 4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990 Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EBG, Tibpromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gafforov Y, Camporesi E, Bulgakov TS, Ekanayake AH, Perera RH, Samarakoon MC, Goonasekara ID, Mapook A, Li WJ, Sena- nayake IC, Li JE Norphanphoun C, Doilom M, Bahkali AH, Xu JC, Mortimer PE, Ti- bell L, Tibell S, Karunarathna SC (2018) Fungal diversity notes 709-839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1-236. https://doi.org/10.1007/s13225-018-0395-7 White TJ, Bruns T, Lee S)WT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applica- tions 18: 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 Yang CL, Xu XL, Wanasinghe DN, Jeewon R, Phookamsak R, Ying-Gao L, Li-Juan L, Hyde KD (2019) Neostagonosporella sichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleospo- 88 Danushka S. Tennakoon et al. / MycoKeys 70: 59-88 (2020) rales) on Phyllostachys heteroclada (Poaceae) from Sichuan Province, China. MycoKeys 46: 119-150. https://doi.org/10.3897/mycokeys.46.32458 Yang JW, Yeh YH, Kirschner R (2016) A new endophytic species of Neostagonospora (Pleospo- rales) from the coastal grass Spinifex littoreus in Taiwan. Botany 94: 593-598. https://doi. org/10.1139/cjb-2015-0246 Yuan ZQ (1994) Barria, a new ascomycetous genus in the Phaeosphaeriaceae. Mycotaxon 51: 313-316. Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of Ple- osporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85-102. https://doi.org/10.3114/sim.2009.64.04 Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 52: 1-225. https://doi.org/10.1007/s13225-011-0117-x Zhang JF, Liu JK, Jeewon R, Wanasinghe DN, Liu ZY (2019) Fungi from Asian Karst forma- tions III. Molecular and morphological characterization reveal new taxa in Phaeospha- eriaceae. Mycosphere 10: 202—220. https://doi.org/10.5943/mycosphere/10/1/3 Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. MBC genomics 3: 1—4. https://doi.org/10.1186/1471-2164-3-4