MycoKeys 90: 3 i=5 | (2022) er-reviewed open-access journal doi: 10.3897/mycokeys.90.847 | 7 < MycoKkeys https://mycokeys.pensoft. net Launched to accelerate biodiversity research Taxonomy and molecular phylogeny of Trametopsis (Polyporales, Basidiomycota) with descriptions of two new species Shun Liu', Yi-Fei Sun', Yan Wang', Tai-Min Xu', Chang-Ge Song', Yuan-Yuan Chen’, Bao-Kai Cui! | Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China 2 College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China Corresponding author: Bao-Kai Cui (cuibaokai@bjfu.edu.cn) Academic editor: Maria P. Martin | Received 1 April 2022 | Accepted 17 May 2022 | Published 31 May 2022 Citation: Liu S, Sun Y-F, Wang Y, Xu T-M, Song C-G, Chen Y-Y, Cui B-K (2022) Taxonomy and molecular phylogeny of Trametopsis (Polyporales, Basidiomycota) with descriptions of two new species. MycoKeys 90: 31-51. https://doi. org/10.3897/mycokeys.90.847 17 Abstract Trametopsis is a worldwide genus belonging to Irpicaceae in the phlebioid clade, which can cause a white decay of wood. Previously, only three species were ascribed to the genus. In this study, we performed a morphological and phylogenetic study of Trametopsis. Molecular phylogenetic analyses of multiple loci included the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-« gene (TEF1). Phylogenetic trees were inferred from the combined datasets of ITS+nLSU sequences and ITS+nLSU+RPB1+RPB2+TEF1 sequences by using maximum parsimony, maximum likelihood and Bayesian inference analyses. Combined with molecular data, morphological characters and ecological traits, two new species of Trametopsis are discovered. Trame- topsis abieticola is characterised by its pileate, solitary or imbricate basidiomata, buff to buff-yellow pileal surface when fresh, becoming pinkish buff to clay-buff when dry, cream to buff pore surface when fresh, becoming pinkish buff to greyish brown upon drying, round to angular and large pores (0.5—1 per mm), cylindrical basidiospores (5.8—7.2 x 1.9-2.6 um), distributed in the high altitude of mountains and grows on Abies sp. Trametopsis tasmanica is characterised by its resupinate basidiomata, cream to pinkish-buff pore surface when fresh, becoming honey-yellow to snuff brown upon drying, cylindrical basidiospores (5.2-6.3 x 1.8-2.2 um), and by growing on Eucalyptus sp. Detailed descriptions and illustrations of the two novel species are provided. Keywords Irpicaceae, macrofungi, multi-gene phylogeny, new species, white-rot fungi Copyright Shun Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 32 Shun Liu et al. / MycoKeys 90: 31-51 (2022) Introduction Trametopsis TomSovsky was established by Tomsovsky (2008) with Z! cervina (Sch- wein.) TomSovsky as type species. The morphological characteristics of Trametopsis are as follows: Basidiomata annual, sessile to effused-reflexed or rarely resupinate. Pileal surface pinkish buff to cinnamon or clay-buff, hirsute to strigose. Pore surface concolorous with pileal surface; pores irregular, daedaloid to irpicoid; dissepiments thin and lacerate. Context pale buff, fibrous. Tubes concolorous with the context, corky. Hyphal system dimitic; generative hyphae clamped. Cystidia absent; fusoid cystidioles occasionally present. Basidia clavate, bearing four sterigmata and a ba- sal clamp connection. Basidiospores cylindrical, hyaline, thin-walled, smooth, IKI-, CB— (TomSovsky 2008). Gémez-Montoya et al. (2017) evaluated the species of Trametopsis in the Neo- tropics based on phylogenetic evidences and morphological analyses. The phylo- genetic analyses showed that Trametopsis is an independent genus; furthermore, one new species, 7’ aborigena Gomez-Mont. & Robledo, and the two new com- binations, 7’ brasiliensis (Ryvarden & de Meijer) Gomez-Mont. & Robledo and T. luteocontexta (Ryvarden & de Meijer) Gdmez-Mont., Robledo & Drechsler-San- tos were presented. Westphalen et al. (2019) summarised Antrodiella Ryvarden & I. Johans. and related genera from the Neotropics, and 7’ luteocontexta was trans- ferred to Aegis Gomez-Mont., Rajchenb. & Robledo according to morphological and molecular data. Recent phylogenetic studies have shown that Trametopsis be- longs to Irpicaceae Spirin & Zmitr in the phlebioid clade (Justo et al. 2017; Chen et al. 2021). So far, three species are accepted in Trametopsis, viz., T: aborigena, T. brasiliensis and T. cervina. During our investigations of wood-decay fungi, some specimens of the phlebioid clade were collected. These specimens possess glabrous or velutinate to strigose pile- al surface, round to angular, irregular, daedaleoid to irpicoid pores, saprophytic on dead wood and causing white rot. Preliminary morphological observations showed that these specimens may belong to Trametopsis. To determine the phylogenetic posi- tions of these specimens, we performed phylogenetic analyses of Irpicaceae with em- phasis on Trametopsis based on the combined sequences datasets of ITS+nLSU and ITS+nLSU+RPB1+RPB2+TEF1. Combining morphological and molecular evidence, two new species, viz., 7’ abieticola and T. tasmanica are described and illustrated. Materials and methods Morphological studies The examined specimens were deposited at the herbarium of the Institute of Microbi- ology, Beijing Forestry University (BJFC). Morphological descriptions and abbrevia- tions used in this study follow Cui et al. (2019) and Song et al. (2021). Taxonomy and phylogeny of Trametopsis bf) Molecular studies and phylogenetic analysis The procedures for DNA extraction and polymerase chain reaction (PCR) used in this study were the same as described by Liu et al. (2021a) and Sun et al. (2022). The ITS regions were amplified with the primer pairs ITS4 and ITS5, the nLSU regions were amplified with the primer pairs LROR and LR7, RPB1 was amplified with primer pairs RPB1-Af and RPB1-Cr, RPB2 gene was amplified with the primer pairs fRPB2-f5F and bRPB2-7.1R, and TEF1 gene was amplified with the primer pairs EF1-983F and EF1-1567R (White et al. 1990; Rehner 2001; Matheny et al. 2002; Matheny 2005). The PCR cycling schedules for different DNA sequences of ITS, nLSU, RPB1, RPB2 and TEF1 genes used in this study followed those used in Liu et al. (2021b, 2022) with some modifications. The PCR products were purified and sequenced at Beijing Genomics Institute, China, with the same primers. All newly generated se- quences were submitted to GenBank and were listed in Table 1. Sequences were aligned with additional sequences downloaded from GenBank (Table 1) using ClustalX (Thompson et al. 1997). Alignment was manually adjusted to allow maximum alignment and to minimise gaps in BioEdit (Hall 1999). Sequence alignment was deposited to TreeBase (https://treebase.org/treebase-web; submission ID 29580). In phylogenetic reconstructions, the sequences of Phanerochaete albida Sheng H. Wu and P alnea (Fr.) P. Karst. obtained from GenBank were used as outgroups. The reason for choosing these two species as outgroup taxa is that they belong to Phanerochaete in Phan- erochaetaceae, and are closely related to Irpicaceae (Chen et al. 2021), which conforms to the outgroup selection rules. Furthermore, species of Phanerochaete were also selected as outgroups in other phylogenetic studies of Irpicaceae, such as in El-Gharabawy et al (2021). Phylogenetic analyses approaches used in this study followed Sun et al. (2020) and Ji et al. (2022). The congruencies of the 2-gene (ITS and nLSU) and 5-gene (ITS, nLSU, RPB1, RPB2 and TEF1) were evaluated with the incongruence length difference (ILD) test (Farris et al. 1994) implemented in PAUP* 4.0b10 (Swofford 2002), under heuristic search and 1000 homogeneity replicates. Maximum parsimony (MP) analysis was per- formed in PAUP* version 4.0b10 (Swofford 2002). Clade robustness was assessed using a bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Most Parsimonious Tree (MPT) generated. Maximum Likelihood (ML) analysis was performed in RAxML-HPC v. 8.2.3 with a GIR+G+I model (Stamatakis 2014). Bayesian inference (BI) was calculated by MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003) with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites deter- mined by MrModeltest 2.3 (Posada and Crandall 1998; Nylander 2008). The branch sup- port was evaluated with a bootstrapping method of 1000 replicates (Hillis and Bull 1993). Trees were viewed in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). Branches that received bootstrap supports for maximum parsimony (MP), maximum likelihood (ML) and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported, respectively. Shun Liu et al. / MycoKeys 90: 31-51 (2022) 34 (1707) ‘Te 9 UsyD (9102) ‘Te 39 Suef (800Z) ‘Te 39 297 (1Z0Z) ‘Te 39 WYO (1Z0Z) ‘Te 39 WYO (STOZ) HEqqIH pure sepnoyy (1Z0Z) ‘Te 9 WYO (1Z0Z) ‘Te 39 WYO (TZOZ) ‘Te 39 UaYD {(OTOZ) “TRI NAY (1Z0Z) ‘Te 9 waYD (TZ0Z) ‘Te 39 way (1Z0Z) ‘Te 39 WYO (TZ0Z) ‘Te 39 way (S10Z) 2°qqIH pue sepnopy (1Z0Z) ‘Te 39 HYD (S107) HOqqIH pure sepnopy (IZOZ) ‘Te 39 UaYD §(Z10Z) ‘Te 39 Oasn{ (TZ0Z) ‘Te 39 wayD (1Z0Z) ‘ye 39 weYD (1Z0Z) ‘Te 39 WYO (LZOZ) “Je 39 UaUD §(Z10Z) ‘Te 39 OIsn[ (SIOZ) 4OqqIH pure sepnoyy (STOZ) 29qqIH pur sepnoyz.y (1Z0Z) ‘Te #9 WYO (1Z0Z) ‘Te 39 UY (9L0Z) ‘Je 19 UoUMATYy (9102) ‘Je 19 uLds (V10Z) Te 39 ef (¥10Z) Te 39 ef (STOZ) HEqqIH pure sepnoyy (1Z0Z) ‘Te #9 WYO (1Z0Z) ‘Te39 UeYD <(OTOZ) “Te3? MAN SIUIIIJIY ‘Apnis sty} ut sasAjeue sNaUaSoyAyd Joy pasn sdduonbas Jo Joquinu UOTssa0d" YURGUer) pur ‘suduTIDads €89ETOZWN 60ZET6ZW. T8OETOZN I89€T6ZW O89ET6ZWN. 6LICTOZN. 9LIETOZW LLIETOZW 8LIETEZW SLIETOZW 669ET6ZW. 89NETOZW TdaL Z809€TMO CEV8PLZW. €Lovet da LO8VETIA S609 TIO EVY8PLZW 0809€TIO OCP8PLZW 6ZO9ETIO 61Y8PZZW 8ZO9ETIO 8IP8PZZW LLONETAO YO8PE Ida CTLOVETAO 196876AM 7 TepspZZW TZO9ETMO O€P8PZZW 0ZO9ETIO 6CP8PLZW 6909€ TIO 096876AM VIGPEI da S8Z¥ET dy VOOIETAO SEPBPLZW I@6PET da CTO8PE TAA 8909€TIO ST¥8PZZW cada Tddu SUOISS990" YURGuUer) ISTLZE9ZW ZIE89O[M OSTLEIZW. 6YILEIZW. PITSEL AM IPILEOZN. SET LEIZW 7LI0LVOD 67ILEIZW 87ILEIZW OZILEIZW 6ITLEIZW 9TILEIZWN ELI LEOZW. TITLEIZW ITIZE9ZN. OLTLEIZW 6888h6AM 007SETAM 601 ZE9ZW. 80TLEIZW. 0097SZXM I8P9ETXM DPOPPOX! SvOvVOX! O€ZSETIM 960L69ZN. 0€90L4OD astTs 06699ZW. O1S899fN TS80SZf4 6869£9ZW. 8869£9ZW 090S€TdM 0869€9ZW 9L69€9ZN. LL69CIZW. L969S9ZN. 996969ZN. LS69S9ZN. 9S6969ZN. 8ZOSETIM LTOSETIM LYL8¥6AM 0S69E9ZW. 6469C9ZW. 8h69CIZW. 8PL8h6AM 67OSETAM TEOSEl dy LE6ICIZN. 9F69C9ZN. 0097SZXM I8h9€TXM PS6ETIXL €S6€ET9OXL LOOSETAM TECIEIZW I<6969ZN. SLI une) vaIOy, YINOS vaIOy YyINOS vuly’) vuly) VSN eUIye) eUIye) eUIye) eUIye) eUlye) eUlye) eUIye) VSN VSN VSN VSN eUlye) eUIye) uredg VSN VSN eUlye) eUlye) spurpoyjaN pueyul 4 eulye) eulye) VSN eUlye) PISSN YY AypeooT cZET OHA 10 “601 T7107 ONY 800¢ A 7-S0ZO UX 1-S0Z0 MA 9CLST-T S8P-9T PAN YOT-O160 MAN T-STSO088 MAN 6YI-8T PA 96S€ WY 6I-TTOT MA SI-TTOT UA cSOCOI-dA ooy-dd LOO7L 6€¢COI-dj 98-8010 MA PLV-8I PA €€8l-dD SyTIOI-di 769ST-dHH T8-809T MA O€T-809T MAN TOZTT Vou 6066 ultds 66771 PA LCEETT Fd Z8ETOI-dl SAV AGUIN 10Zz@ DNOA ‘ou o[duresg SNIVAIIV] “J saprouphy “T TIBUNSYIVY “T snavy T snanyl xaday sngouizouund 5) supquatso snsodoao)£) sisuauvuunt “7 sisuauvuunt “7 pndodg “7 pido “7 SISUANSIDUL “FT SISUaNSIDUL “TT SYIIVS “TT sylmvas pynqyy vinputu + vayauoqyy “7 VIDULBADULOGID *7) VIVULBADULOGID °°) mpiqyy vyparpi) ‘ds 26) suadsas “7 suaduas "J "7 suaddas "JD synayvyshay supptaia “7 supplaia “) DIVULBADULOUTIVGNG *) vIVULBADULOUIVGNG V1L0d14a) wntsor “J wntsor “T winisor snynsauosshg sotsodg ‘saroads Jo asl] YW *| SIQeL aD Taxonomy and phylogeny of Trametopsis Apnys yuasarg Apnys yuasarg (OL0Z) ‘Te 39 Lysaosuroy, (1Z0Z) ‘Te 9 BeYD *(8TOZ) ‘Te 39 weYyD (1Z0Z) “Te 39 HYD (1Z0Z) “Te 39 HYD (STOZ) HEqqIH pur sepnoyy (ST0Z) HEqqIH pur sepnoyy (IZ0Z) ‘Te 39 4PYD (S107) HEQqH pue sepnoyy (O10Z) ‘Te 9 A (1Z0Z) ‘Te 39 YeYD “(OTOZ) Te MAK (1Z0Z) ‘Te 39 WYO (1Z0Z) ‘Te 39 UEYD *(OLOZ) Te 2° MAN (STOZ) 2OqQIH pur sepnoyz.y (LZ0Z) “Je 39 UeyD (1Z0Z) “Te 39 HYD *(OTOZ) Te 2? MAY (1Z0Z) ‘Te 39 HYD (S107) HOH pure sepnopy (LZ0Z) “Je 39 UeyD (OZOZ) “Je 32 UeyD (OZOZ) “Je 39 UeyD (0Z0Z) “Te 39 HYD (0Z0Z) “Te 39 HYD (S10Z) BOqqIH pue sepnopy (1ZOZ) ‘Te 39 UaYD §(Z10Z) ‘Te 39 Oasn{ (OLOZ) BAgsiinsg (€10Z) Te 39 9purg §(Z10Z) “Te 9 as1AyxOlS (Z10Z) ‘Te 39 ws1ayxols (1Z0Z) ‘Te #9 WYO (1Z0Z) “Te 39 WYO (Z107Z) ‘Te? 1A (S10Z) 22qqIH pue sepnopy (S10Z) 22qqIH pue sepnopy (€10Z) ‘ye 29 yepurg S9OUIIIFJIY 8ZLE80NO = TI¥660NO += F0FGG60NO_—- SSOITFONO —- GEOTFONO LLLE80NO_ _—sW«dTT#¥660NO ~—- €0660NO_~—- FSOTFONO =—_- 8EOTFONO = = = 86996F[4 6L996F[4 €IZEI6ZW = L609ETMO 9EP8SPLZW 89TLEIZN ~—s« €OTBB89AM = — = 697LEIZW ss 6DOLEIZN ZILEIGZN =: 9G09ETMO = LICLEIZW ~—s- 89OLEIZN. a 7a C6LPET dM LOTSEITUM =: €ZOS ETA = = = = L66¥E Ida 889€16ZN 616PET dM 0O8rET dM 6S7TSEIUM =: 966FE Td = = — TETLEIZW Ss LTOLEIZW 689EI6ZN —s- E809E IMO €THBPLZW 9F90ZFOD ~=—- STOLEYZW mi = = 6CTLEIZW Ss TCOLEIZW. 8IZEIGZW = F809 TNO DCVSPLZW 0S90ZFOD = EZOLEIZW — SI6PETdy 66L¥E1 dM 9€7SEIUM =: LOS ETd os a a C7CLEIZW. Ss LIOLEOZW L89E16ZW ss T809E TNO T7HSPLZW. 8690ZFOD ~—: OZOLEIZW IPIOCIGOZN ~—s VLODET MO C8E8hPlZW I8IZE9ZW Ss LLISETAM POLEI6ZN ~=—s- € LONE TNO D8E8PLZW 6LILEIZW Ss 88LTTHZIW. — i €90L7HOT OSOLTHOT ~=—s- 870 Z7HOT = = C90LTHOT 6€0L7HOT ~=—s LIOLZHOT = = OLOL7HOT €COLTHOT ~—s- E107HOT al al at PEOLTHOT ~—- OLNLTHOT = = L8L¥E1dM 677SEIMM = ISOS ETA €69€16ZW LOL9ETMO 9668F6AM SSILEIZW Ss HOLBHVOAM — — = = IpeSELOW 406601 XI ¢Z8601Xf = OPS6VON( = 9PEGHONTL — = = LPCOVON( = LPEOFHONL — — — ESTLEIZN ~=—s- COGIEIZ. C89EI6ZW — DEVSPLZW TSTLEIZN ~—s 1GGNEIZIN ee ae = €68I€IAM PESIEIAd = CI6PETAM CO8PET dM COTSEIUM § =—s- PEOS ETA = = = = C7OSETAM a T88601Xf = ZS8601XL ZS8601XL TAL 7TH Tddu astTs SLI SUOTSS9I9D9Ne yuequor) euryD euryD oyqnday YooZ°) Pury) Le) Le) wsn wsn wsn eUIye) eUlye) eUlye) eUlye) wsn eUulye) eUlye) wsn eUrye) eUlye) eUlye) eUIye) eUlye) wsn wsn ISSN [erg vsn eUIye) eUulye) eUlye) vsn vsn UdpeMg¢ AyypeooT €8E8T MD €9E8T MD 6910TZ WNUd 9F-60TT MAA GS-80S6 MA 661-6070 MH 6c9ST-@HH CLI-NIA 6068-dHH 6-€0ZT WA CIET HOD 89FE TOD 6Ly WYD 8869-dHH 0Z-T0ST DD 6£-9096 UX SCIIST-di yI-LOVT OD 09-F0ZT DD 8S-607T MA €V-80LZT MA 9¥-90ST OAMHOD 67Z0Il HH €9IL-DOTA 68 NIG AT 6TLEILDW CS80PUT 7C-809T MA FI-809T UA COTZ req L-1@SSS-dd €6-dA Ity Od ‘ou a[dures BJOI14atqV *T yjos1jaiqu sisdojauvay SUIISDULSAL “YE suaasaytdopnasd snsodiussay suaasaagisopnasd Y SNUIAIUD “Y snutuauy snsodynpuy nyaqdosox i ryaqdosrx i vusaporday J vusaporda J vuvsousof J vuvsousof J SYIXA VIVIPYSMIOISNBUD ET VIVIPYSMIOISNBUD VIJAIVYIOLIUDY vaUyD ef DPIGIV MaVYIOLIUDY J DIONXYL “JW modstasvd ‘we vavipistooqday “Ar VIVIUNIISSVAI "Ar snaurupigsogyy sisdoynsayyy SHOUT. styou snsodoydaT SIULAOfINIISOL *T SIULLOfIIIISOL “T squaq ‘T squa ‘T SNIDUIBADULAQD] “T SNIDUIBADULALY] “T SNHIV] "T nav] "T sotoodg Shun Liu et al. / MycoKeys 90: 31-51 (2022) 36 Apnys yuasarg Apnys yuasarg (L107) 2°qqEH pur oasn{ Apnys yuasarg Apnys yuasarg Apnys yuasarg Apnys yuasarg Apnys yuasorg Apnys yuasarg Apnys yuasorg Apnys yuasarg (ZLOZ) ‘Je 39 BUSUINATPy (Z10Z) ‘Je 19 eAOIUOP-zaUIO Ly (Z10Z) ‘Je 12 eAoIUOP-zoUTOLy SIDUIIIFIY 88ZE80NO 07#660NO OIFG60NO S90IFONO G6FOIFONO Z8Z€80NO ==6I¥660NO += 60#660NO—=—_« FNOIFONO—_- 80 1FONO T88P9OINL LL8P9INE 6€8P9INI 96ZP9IN[ — OZOSOTNI ae a POSEITAN 76SEITAM 98Z£80NO 8sI'660NO 80%660NO £90IFONO Z¥FOIFONO S8Z€80NO = a ZIOIVONO = 9F0TYONO 8ZE80NO LI¥660NO = I90IFONO S¥FOIFONO €8Z€80NO 9I%660NO ZOFG60ONO O090IF0ONO ¥FF0IFONO Z78Z£E80NO = 906660NO G6SOIFONO €F0IFONO I8Z€80NO SIGGONO SOFGGONO 8sS0IFONO Z¥O0IFONO 08ZE80NO ¥F1¥660NO — ZSOIFONO —I¥OTFONO 6ZLE80NO_ —- € 1#660NO rn 9SOIFONO O0F0IFONO = aa = OISOIZN( = OTSOTZNI — = = 6EESSOAM — LEESSOAM — _ = SEESSOAM —- OEESSOAM TAL TH 1ddu astTs SLI SUOTSSID9Ne yuequor) ‘pyoq ur umoys are Apnas sty J0j soouanbes payesiouas AMON eIpensny eIpensny vsn uel] vary) vary) vary) vary) vary) vary) vary) vary) [ize 1g eunuasiy eunuasiy AyypeooT ZO99T MD 9099T MD L9IITZ-€6-ALL 667 DIN £989 9H HSHCT Fe POST Fed OzsIz fea SISIz rea GIO8T MD LIO8T ™O ZIZLI MOD LENE Jl SETI OP2TGOY SETI OPAIGOU ‘ou o[dures VILUDULSDA *T VILUDULSDA *T DUIAAII *T DUIAAII *T BUuLasad "J BUulasad "J BUulasad *T DULALDI “J BUuLasad *T BUulasad *T BUuLasad *T DULALDI “J SISUITIISDAQ *T DUASILOGD ‘T. BUASILOGD “J. sotoodg Taxonomy and phylogeny of Trametopsis 37 Results Phylogeny The combined 2-gene (ITS+nLSU) sequences dataset had an aligned length of 1893 char- acters, including gaps (619 characters for ITS, 1274 characters for nLSU), of which 1307 characters were constant, 105 were variable and parsimony-uninformative, and 481 were parsimony-informative. MP analysis yielded 26 equally parsimonious trees (TL = 2150, CI = 0.409, RI = 0.776, RC = 0.317, HI = 0.591). The best-fit evolutionary models applied in Bayesian analyses were selected by MrModeltest2 v. 2.3 for each region of the two genes, the model for ITS was GTR+1+G with equal frequency of nucleotides, while the model for nLSU was SYM+I+G with equal frequency of nucleotides. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Fig. 1. The combined 5-gene (ITS+nLSU+RPB1+RPB2+TEF1) sequences dataset had an aligned length of 4609 characters, including gaps (619 characters for ITS, 1274 char- acters for nLSU, 1170 characters for RPB1, 1001 characters for RPB2, 545 characters for TEF1), of which 2675 characters were constant, 272 were variable and parsimony- uninformative, and 1662 were parsimony-informative. MP analysis yielded 36 equally parsimonious trees (TL = 9247, CI = 0.362, RI = 0.652, RC = 0.236, HI = 0.638). The best-fit evolutionary models applied in Bayesian analyses were selected by MrMod- eltest2 v. 2.3 for each region of the two genes, the model for ITS, RPB1, RPB2 and TEFlwas GTR+I+G with equal frequency of nucleotides, while the model for nLSU was SYM+I+G with equal frequency of nucleotides. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Fig. 2. ThephylogenetictreesinferredfromITS+nLSUandITS+nLSU+RPB1+RPB2+TEF1 gene sequences were all obtained from 78 fungal samples representing 42 taxa of Irpicaceae and two taxa of Phanerochaetaceae within the phlebioid clade (Figs 1, 2). Phylogenetic analyses showed that Trametopsis abieticola, T: aborigena, T. brasilien- sis, T. cervina and T tasmanica grouped together within Trametopsis by high support (100% ML, 100% MP, 1.00 BPP; Figs 1, 2). Taxonomy Trametopsis abieticola B.K. Cui & Shun Liu, sp. nov. MycoBank No: 844097 Figs 3, 4 Diagnosis. Trametopsis abieticola is distinguished from 7’ tasmanica by larger pores (0.5—1 per mm) and basidiospores (5.8—7.2 x 1.9—2.6 um), and by being distributed in the high altitude of mountains and growing on Abies sp. Holotype. China. Xizang Autonomous Region (Tibet), Mangkang County, Man- gkang Mountain, on fallen trunk of Abies sp., 8 September 2020, Cui 18383 (holotype BJFC 035242). 38 Shun Liu et al. / MycoKeys 90: 31-51 (2022) 100/100/1.00) Irpex lacteus DO 421 oe 100/100/1.00 Irpex lacteus FD 93 ° Irpex hydnoides KUC 2013 tooo = 687 L_ Irpex hacksungii F 2008 1o0/100/1.00 - Irpex flavus Wu 0705-2 P7202) Irpex flavus Wu 0705-1 68/720.9) Inpex latemarginatus Dai 7165 100/100/1.00) oars Irpex latemarginatus FP 53521 T Irpex laceratus WHC 1372 100/98/1.00- Irpex rosettiformis LR 40855 Irpex rosettiformis Meijer 3729 90/97/0.96 Irpex lenis Wu 1608-22 100/100/1.00! Jrpex lenis Wu 1608-14 1oo/100/1.00- Efi W Generic type 76/73/0.91 63/56/- L y: 1oooort.oo] 190/100/1.008 Exibu loo/100/1.00 ) Efib 100/100/1.007-— By. Byssi 100/100/1.00 100/100/1.00 99/96/1.00 93/94/1.00 6264-7 Resiniporus pseudogilvescens Wi 100/100/1.00 Resiniporus pseudogilvescens Wu Resiniporus resinascens BRNM 710) 100/100/1.00 Raduliporus aneirinus Wu 0409-1 Raduliporus aneirinus HHB 1 100/100/1.00, Crysi pe 100/100/1.00 51/53/- 100/100/1.00 72/71/0.93 100/100/1.00 100/100/1.00 80/82/0.96 100/100/1.00- 62/65/0.90 100/100/1.00 100/100/1.00 , Gloeoporus pannocinctus L_ Phanerochaete albida GC 1407-14 =a Phanerochaete alnea FP 151125 Figure |. Maximum likelihood tree illustrating the phylogeny of Trametopsis based on the combined sequences dataset of ITS+nLSU. Branches are labelled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50% and Bayesian posterior probabilities more than 0.90 respectively. Bold names = New species. Taxonomy and phylogeny of Trametopsis 39 100/100/1.00- Irpex rosettiformis LR 40855 100/100/1.00 \—. Irpex rosettiformis Meijer 3729 i Irpex lenis Wu 1608-22 ® Generic type 95/97/1.00] — 100/100/1.00 Toe lenis Wu 1608-14 67/71/0.92, Irpex latemarginatus Dai 7165 Irpex latemarginatus FP 55521 T 100/100/1.00L. Irnex laceratus WHC 1372 100/100/1.00) Irpex lacteus DO 421 * 100/100/1.00 Irpex lacteus FD 93 Irpex hydnoides KUC 20121109-01 56/64/0.90 Irpex hacksungii F 2008 100/100/1.00 - Irpex flavus Wu 0705-1 Irpex flavus Wu 0705-2 100/100/1.00 100/99/1.00) 100/100/1.00} 6 5/64/- 100/100/1.00 100/100/1.00 100/100/1.00) 100/100/1.00 || 100/100/1.00} | 100/100/1.00 loo/loo/1.00) 100/100/1.00--_ 78/76/0.92 100/100/1.00} 100/100/1.00) 100/100/1.00} Resiniporus pseudogilvescens Wu 1209- 1 00/1, 00/100) Resiniporus pseudogilvescens Wu 9508-54 * 100/100/1.00 100/100/1.00 100/100/1.00 74/76/01 100/100/1.00 Gloeoporus oriental 100/100/1.00 Gloeoporus pann Phanerochaete albida GC 1407-14 “aa Phanerochaete alnea FP 151125 Figure 2. Maximum likelihood tree illustrating the phylogeny of Trametopsis based on the combined sequences dataset of ITS+nLSU+RPB1+RPB2+TEF1. Branches are labelled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50% and Bayesian posterior probabilities more than 0.90 respectively. Bold names = New species. 40 Shun Liu et al. / MycoKeys 90: 31-51 (2022) Figure 3. Basidiomata of Trametopsis abieticola (Holotype, Cui 18383). Scale bar: 3 cm. Etymology. Adieticola (Lat.): referring to the species grows on Abies sp. Fruiting body. Basidiomata annual, pileate, solitary or imbricate, soft corky to corky, without odour or taste when fresh, becoming corky and light in weight upon drying. Pilei applanate to flabelliform, projecting up to 9.5 cm long, 5.5 cm wide, and my and phylogeny of iE IZ g Y , { By NGC fay ) INNS \ / ANS IW d —— pm CoE WX a 42 Shun Liu et al. / MycoKeys 90: 31-51 (2022) 2 cm thick at base. Pileal surface buff to buff-yellow when fresh, becoming pinkish buff to clay-buff when dry, strigose or glabrous; margin white to cream when fresh, becoming cream to buff-yellow when dry, obtuse to acute. Pore surface cream to buff when fresh, becoming pinkish buff to greyish brown upon drying; pores round to angular, 0.5—1 per mm; dissepiments slightly thick, entire to lacerate. Context corky, cream to buff yellow, up to 8 mm thick. Tubes concolorous with pore surface, corky, up to 7 mm long. Hyphal structure. Hyphal system monomitic in context, dimitic in trama; gen- erative hyphae with clamp connections; skeletal hyphae IKI—, CB-; tissues unchanged in KOH. Context. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, loosely interwoven, 2.8—4.2 um in diam. Tubes. Generative hyphae frequent, hyaline, thin- to slightly thick-walled, occa- sionally branched, 1.8—3.5 um in diam.; skeletal hyphae dominant, hyaline, thick- walled with a wide to narrow lumen, occasionally branched, more or less straight, interwoven, 2—4.5 um in diam. Cystidia and cystidioles absent. Basidia clavate, bear- ing four sterigmata and a basal clamp connection, 17.8—22.5 x 4.3—5.5 um; basidioles dominant, similar to basidia but smaller. Spores. Basidiospores cylindrical, hyaline, thin-walled, smooth, IKI-, CB-, (5.7— )5.8-7.2 x (1.8-)1.9-2.6(-2.8) um, L = 6.57 um, W = 2.22 um, Q = 2.75-3.26 (n = 60/2). Type of rot. White rot. Additional specimen (paratype) examined. China. Sichuan Province, Yajiang County, Kangbahanzi Village, on fallen trunk of Abies sp., 7 September 2020, Cui 18363 (BJFC 035222). Trametopsis tasmanica B.K. Cui & Shun Liu, sp. nov. MycoBank No: 844098 Figs 5, 6 Diagnosis. Trametopsis tasmanica is distinguished from 7. abieticola by resupinate ba- sidiomata, smaller pores (2-4 per mm) and basidiospores (5.2—6.3 x 1.8—2.2 um), and by growing on Eucalyptus sp. Holotype. Australia. Tasmania, Hobart, Mount Wellington, on rotten wood of Eucalyptus sp., 13 May 2018, Cui 16606 (holotype BJFC 029905). Etymology. Zasmanica (Lat.): referring to the species collected from Tasmania in Australia. Fruiting body. Basidiomata annual, resupinate, not easily separated from the substrate, without odour or taste when fresh, becoming corky to fragile and light in weight upon drying; up to 5.5 cm long, 2 cm wide, and 7 mm thick at centre. Pore surface cream to pinkish-buff when fresh, becoming honey-yellow to snuff brown upon drying; pores round to angular, 2-4 per mm; dissepiments slightly thick, entire to lacerate. Context very thin, corky, cream to buff, up to 2 mm thick. Tubes concolorous with pore surface, corky, up to 4 mm long. Taxonomy and phylogeny of Trametopsis 43 a o Figure 5. Trametopsis tasmanica (Holotype, Cui 16606 and paratype, Cui 16607). Scale bar: 1 cm. Hyphal structure. Hyphal system monomitic in context, dimitic in trama; generative hyphae with clamp connections; skeletal hyphae IKI-, CB-; tissues unchanged in KOH. Context. Generative hyphae hyaline, thin- to slightly thick-walled with a wide lu- men, occasionally branched, loosely interwoven, 2.74 um in diam. C0 ue aie it! 1) ae =): YA Y AS | } yy] ) il VE ay = ey iy mK - : Ae \G pa 6 a yum iN , a=. D\ MISS q, VAG J if U/ ( g \ > we yy \ | (ae lL, iF OS TAN Taxonomy and phylogeny of Trametopsis 45 Tubes. Generative hyphae frequent, hyaline, thin-walled, occasionally branched, 2-3 um in diam.; skeletal hyphae dominant, hyaline, thick-walled with a wide to narrow lumen, occasionally branched, more or less straight, interwoven, 2—3.7 um in diam. Cystidia and cystidioles absent. Basidia clavate, bearing four sterigmata and a basal clamp connection, 16—19.5 x 3.7—5 um; basidioles dominant, similar to basidia but smaller. Spores. Basidiospores cylindrical, hyaline, thin-walled, smooth, IKI-, CB-, (5—)5.2-6.3 x (1.7—)1.8-2.2(—2.4) um, L = 5.84 um, W = 2.02 um, Q = 2.66-3.13 (n = 60/2). Type of rot. White rot. Additional specimen (paratype) examined. Australia. Tasmania, Hobart, Mount Wellington, on rotten branch of Eucalyptus sp., 13 May 2018, Cui 16607 (BJFC 029906). Discussion In this study, the phylogenetic analyses of Tirametopsis and related genera are inferred from the combined datasets of ITS+nLSU sequences (Fig. 1) and ITS+nLSU+RPB1+RPB2+TEF1 sequences (Fig. 2). The genera; Raduliporus Spirin & Zmitr., Resiniporus Zmitr. and Trametopsis grouped together and formed a highly supported lineage (Figs 1 and 2), which was called the Trametopsis lineage by Chen et al. (2021). Morphologically, Raduliporus and Resiniporus differ from Trametopsis by having a monomitic hyphal system and ellipsoid basidiospores (Chen et al. 2021). Phylogenetically, 7’ abieticola and T; tasmanica clustered with other Trametopsis species (Figs 1, 2) with high supports (100% MP, 100% ML, 1.00 BPP; Figs 1, 2). The main morphological characters and ecological habits of species in Trametopsis are provided in Table 2. The geographical locations of the Trametopsis species distributed in the world are indicated on the map (Fig. 7). Trametopsis abieticola is distributed in high altitude areas of the Hengduan Moun- tains (altitude > 3500 m) and grows on Abies sp. In the phylogenetic trees, 7’ abieti- cola is closely related to T’ tasmanica (Figs 1, 2). Morphologically, 7’ tasmanica differs from 7. abieticola in having resupinate basidiomata, smaller pores (2-4 per mm) and basidiospores (5.2—6.3 x 1.8—2.2 um), being distributed in Australia and growing on Eucalyptus sp. Trametopsis cervina can also distributed in high altitude areas of the Hengduan Mountains (according to our investigations), but 7’ cervina differs from LT. abieticola by its smaller pores (2-4 per mm), longer basidiospores (6-9 x 2-3 um; TomSsovsky 2008), and usually growing on angiosperm trees. Trametopsis aborigena, L. brasiliensis and T. abieticola share an annual growth habit, a monomitic hyphal sys- tem in context, dimitic in trama and clamped generative hyphae; but 7’ aborigena dif- fers from 7. abieticola by having light pale brown to pale yellowish pileal surface with yellowish red to dark yellowish brown radial veins, smaller pores (1-3 per mm) and ba- sidiospores (5—7 x 1—2 um), and being distributed in neotropical regions of Argentina Shun Liu et al. / MycoKeys 90: 31-51 (2022) 46 Apnys quasar J Apmis quasaid ‘(7 [ QZ) ‘Te 19 PAOIUOP[-Z9UIO) *(800Z) Aysaogumo], (Z10Z) ‘Te 39 eAorUOpy “ZIWIO) *(Z00Z) Jaflayy pue uapreaky (L102) ‘Te 19 eAOIUOP]-Zd9UIOL) Apnys yuasasg SIDUIIIFIY Gree TC-BTXE9-C'S =X SOI-9T E-EK6-9 L-S * S707 TTSITXSS-SY SH 0C-ST CCI X L-S 9-S * @7-6I SS-E'V NCCT XTL-BS =< S°7C-8°LT (um) sasodsorpiseg (umn) erpisegq § (urur Jod) sar0g €- T-S$'0 dJEUTT]D DUTIEUL ajeurdnsay (snad(qvonq) waedsorsuy — ayes0d way, (elensny) erue29G DILUVUUSYY “J (snuig ‘xt4vT) va1odsouutAr) (WSC ‘epeued) eoaury YON £(19 ‘x77Bg ‘sno4anC) pure ‘(939 “eissmy ‘ouTe Dy ‘purjog ‘snndog ‘suquvpinhrT “eryeaoys ‘Ayer] ‘o990I£) ‘oueL] ‘suman ‘sndpq ‘sndivooanpgy Jecrdon *yoazy ‘umidjag ‘emmsny) adoingq azeutdnsar Ayjeuorseso0 JO ‘snurduvy “‘vinqag ‘snuly 01 ayerodutay “(uel “euTYyD)) PIsy ‘(eruezueT, areayid 0} paxopos-posnyq ‘“waapy) wuodsorsuy ‘neaieyd ourdyy ‘epuemy ‘Ipuning) eoLyy puIasdd °T (snouopajqo21q) neII I wuodsoisuy pecrdonoayy ([Izerg) eoraury yINos SISUIYISPLQ *T, areutdnsas ATPeuoTsed90 JO (pouruiaiapuy)) poxopos-posnya ‘oea]Iq wuodsoisuy pecrdonoayy (eunuasry) eoLIoury yINoSg puas1sogD "J vj0914a1qQU sea] (satgy) wusadsouurds) neajeyd ourdyy (eury)) eIsy sisdojauvay ASpog Sunmsy IsOP] 9u0Z 9)eUNT]D) vonngimnsiq sureu sotsedg “Pjoq ul umoys ase sardads Mayy ‘sisdozawumsy ut satdeds Jo siiqey [edIsojODa pur siajovIeYO [eo1sojoydiow urewl ayy *7 BIqeL Taxonomy and phylogeny of Trametopsis 47 foo 8060" 40” 20” o 20° 40° 60° 80° 140° 100° 80°60" 40" 20° of 20° «440° «60° 80° 120° 160° 180° AT. abieticola’ AT. aborigena AT. brasiliensis AT. cervina AT. tasmanica Figure 7. The geographical locations of the Trametopsis species distributed in the world. (Gémez-Montoya et al. 2017); T° brasiliensis differs from T abieticola in having smaller pores (1—2 per mm) and basidiospores (4.5—5.5 x 1.8—2.2 um), and being distributed in neotropical regions of Brazil (Gémez-Montoya et al. 2017). Trametopsis tasmanica is distributed in Tasmania, Australia and grows on Eucalyptus sp. Before that, there was no report of Trametopsis in Oceania. Morpho- logically, 77 tasmanica and T: cervina share similar-sized pores, but 7’ cervina differs from T’ tasmanica by its pileate to effused-reflexed basidiomata, larger basidiospores (6-9 x 2-3 um; TomSovsky 2008). Trametopsis aborigena, T’ brasiliensis and T: tas- manica are only distributed in the southern hemisphere and grow on angiosperm trees. However, 7! aborigena differs from 7! tasmanica by having pileate, effused-reflexed to occasionally resupinate basidiomata, larger basidia (19-22 x 5—6 um) and basidi- ospores (5—7 x 1—2.5 um), and being distributed in neotropical regions of Argentina (Gémez-Montoya et al. 2017); TZ’ brasiliensis differs from T. tasmanica in having pileate basidiomata, larger pores (1-2 per mm) and distributed in neotropical regions of Brazil (Gémez-Montoya et al. 2017). In summary, we performed a taxonomic and phylogenetic study of Trametopsis. The concepts and species number of the Trametopsis are updated. So far, five species are accepted in the 7rametopsis around the world. Currently, Trametopsis is characterised by an annual growth habit, effused-reflexed to pileate or resupinate, solitary or imbricate basidiomata, pinkish buff to cinnamon or clay-buff, zonate or azonate, glabrous or 48 Shun Liu et al. / MycoKeys 90: 31-51 (2022) velutinate to strigose pileal surface, cream, pale yellow to greyish brown pore surface with round to angular, irregular, daedaleoid to irpicoid pores, a monomitic hyphal system in context, dimitic in trama, clamped generative hyphae, and allantoid to cylin- drical basidiospores; it grows on different angiosperm and gymnosperm trees, causing white rot of wood (TomSovsky 2008; Gémez-Montoya et al. 2017). Acknowledgements We express our gratitude to Ms. Xing Ji (China) for help during field collections and molecular studies. Also to Drs. Genevieve Gates (Australia), Xiao-Lan He (China) and Hai-Xia Ma (China) for their assistance during field collections. The research is supported by the National Natural Science Foundation of China (Nos. 31870008, U2003211, 31900017), Beijing Forestry University Outstanding Young Talent Culti- vation Project (No. 2019JQ03016). References Binder M, Justo A, Riley R, Salamov A, Lépez-Giraldez F, Sjokvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson KH, Townsend J, Grigoriev IV, Hibbett DS (2013) Phylo- genetic and phylogenomic overview of the Polyporales. Mycologia 105(6): 1350-1373. https://doi.org/10.3852/13-003 Chen CC, Wu SH, Chen CY (2018) Four species of polyporoid fungi newly recorded from Taiwan. Mycotaxon 133(1): 45-54. https://doi.org/10.5248/133.45 Chen CC, Chen CY, Lim YW, Wu SH (2020) Phylogeny and taxonomy of Ceriporia and other related taxa and description of three new species. Mycologia 112(1): 64-82. https://doi.or 2/10.1080/00275514.2019.1664097 Chen CC, Chen CY, Wu SH (2021) Species diversity, taxonomy and multi-gene phylogeny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Diver- sity 6(1): 337-442. https://doi.org/10.1007/s13225-021-00490-w Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, tax- onomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137-392. https://doi.org/10.1007/s13225-019-00427-4 El-Gharabawy HM, Leal-Dutra CA, Griffith GW (2021) Crystallicutis gen. nov. (Irpicaceae, Basidiomycota), including C. damiettensis sp. nov., found on Phoenix dactylifera (date palm) trunks in the Nile Delta of Egypt. Fungal Biology 125(6): 447-458. https://doi. org/10.1016/j.funbio.2021.01.004 Farris JS, Kallersjs M, Kluge AG, Kluge AG, Bult C (1994) Testing significance of incongru- ence. Cladistics 10(3): 315-319. https://doi.org/10.1111/j.1096-0031.1994.tb00181.x Felsenstein J (1985) Confidence intervals on phylogenies: An approach using the bootstrap. Evolution; International Journal of Organic Evolution 39(4): 783-791. https://doi. org/10.1111/j.1558-5646.1985.tb00420.x Taxonomy and phylogeny of Trametopsis 49 Floudas D, Hibbett DS (2015) Revisiting the taxonomy of Phanerochaete (Polyporales, Basidi- omycota) using a four gene dataset and extensive ITS sampling. Fungal Biology 119(8): 679-719. https://doi.org/10.1016/j.funbio.2015.04.003 Gémez-Montoya N, Drechsler-Santos ER, Ferreira-Lopes V, Tomsovsky M, Urcelay C, Roble- do GL (2017) New insights on Trametopsis Tomsovsky (Polyporales Gaum.) based on phy- logenetic evidences and morphological analyses of neotropical species. Phytotaxa 311(2): 155-166. https://doi.org/10.11646/phytotaxa.311.2.3 Hall TA (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis pro- gram for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematics and Biodiversity 42: 182—192. https:// doi.org/10.1093/sysbio/42.2.182 Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim JJ (2016) Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 44(4): 217-236. https://doi.org/10.5941/MYCO.2016.44.4.217 Ji X, Zhou JL, Song CG, Xu TM, Wu DM, Cui BK (2022) Taxonomy, phylogeny and di- vergence times of Polyporus (Basidiomycota) and related genera. Mycosphere: Journal of Fungal Biology 13: 1-52. https://doi.org/10.5943/mycosphere/13/1/1 Jia BS, Zhou LW, Cui BK, Rivoire B, Dai YC (2014) Taxonomy and phylogeny of Ceriporia (Polyporales, Basidiomycota) with an emphasis of Chinese collections. Mycological Pro- gress 13(1): 81-93. https://doi.org/10.1007/s11557-013-0895-5 Justo A, Hibbett DS (2011) Phylogenetic classification of Trametes (Basidiomycota, Polypo- rales) based on a five-marker dataset. Taxon 60(6): 1567-1583. https://doi.org/10.1002/ tax.606003 Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjékvist E, Lindner D, Nakason K, Nie- mela T, Larsson K-H, Ryvarden L, Hibbett DS (2017) A revised family-level classifica- tion of the Polyporales (Basidiomycota). Fungal Biology 121(9): 798-824. https://doi. org/10.1016/j.funbio.2017.05.010 Lee JS, Kim C, Lim YW (2008) Jrpex hacksungii sp. nov. (Polyporaceae) from Korea. Myco- taxon 106: 423-429. Liu S, Han ML, Xu TM, Wang Y, Wu DM, Cui BK (2021a) Taxonomy and phylogeny of the Fomitopsis pinicola complex with descriptions of six new species from east Asia. Frontiers in Microbiology 12: e644979. https://doi.org/10.3389/fmicb.202 1.644979 Liu S, Shen LL, Wang Y, Xu TM, Gates G, Cui BK (2021b) Species diversity and molecu- lar phylogeny of Cyanosporus (Polyporales, Basidiomycota). Frontiers in Microbiology 12: 631166. https://doi.org/10.3389/fmicb.202 1.631166 Liu S, Xu TM, Song CG, Zhao CL, Wu DM, Cui BK (2022) Species diversity, molecular phylogeny and ecological habits of Cyanosporus (Polyporales, Basidiomycota) with an emphasis on Chinese collections. MycoKeys 86: 19-46. https://doi.org/10.3897/mycok- eys.86.78305 Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (nocybe, Agaricales). Molecular Phylogenetics and Evolution 35(1): 1-20. https://doi.org/10.1016/j.ympev.2004.11.014 50 Shun Liu et al. / MycoKeys 90: 31-51 (2022) Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phy- logenetic inference among mushrooms (/nocybe, Agaricales). American Journal of Botany 89(4): 688-698. https://doi.org/10.3732/ajb.89.4.688 Miettinen O, Spirin V, Vlasak J, Rivoire B, Stenroos S, Hibbett D (2016) Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17: 1-46. https:// doi.org/10.3897/mycokeys.17.10153 Miettinena O, Larssonb E, Sjékvist E, Larssonc KH (2012) Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). Cladistics 28(3): 251-270. https://doi.org/10.1111/j.1096- 0031.2011.00380.x Nylander JAA (2008) MrModeltest2 v. 2.3. Evolutionary Biology Centre, Uppsala University, Program distributed by the author. Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioin- formatics (Oxford, England) 14(9): 817-818. https://doi.org/10.1093/bioinformat- ics/14.9.817 Psurtseva NV (2010) Conservation of medicinal mushrooms in the V. L. Komarov Botani- cal Institute Basidiomycetes Culture Collection (LE-BIN, Russia). International Journal of Medicinal Mushrooms 12(2): 193-199. https://doi.org/10.1615/IntJMedMushr.v12. i2.100 Rehner S (2001) Primers for Elongation Factor 1-a (EF1-a). http://ocid.nacse.org/research/ deephyphae/EF 1 primer.pdf Ronquist FE, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19(12): 1572-1574. https://doi.org/10.1093/ bioinformatics/btg180 Ryvarden L, Meijer AAR (2002) Studies in neotropical polypores 14. New species from the state of Parana, Brazil. Synopsis Fungorum 15: 34-69. Sjokvist E, Larsson E, Eberhardt U, Ryvarden L, Larsson KH (2012) Stipitate stereoid ba- sidiocarps have evolved multiple times. Mycologia 104(5): 1046-1055. https://doi. org/10.3852/11-174 Song CG, Ji X, Liu S, He XL, Cui BK (2021) Taxonomy and molecular phylogeny of Phel- lodon (Thelephorales) with descriptions of four new species from Southwest China. Forests 12(7): e932. https://doi.org/10.3390/f12070932 Spirin V, Vlasak J, Rivoire B, Kout J, Kotiranta H, Miettinen O (2016) Studies in the Ceriporia purpurea group (Polyporales, Basidiomycota), with notes on similar Ceriporia species. Cryp- togamie. Mycologie 37(4): 421-435. https://doi.org/10.7872/crym/v37.iss4.2016.421 Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analyses and post analyses of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312-1313. https://doi. org/10.1093/bioinformatics/btu033 Sun YE, Costa-Rezende DH, Xing JH, Zhou JL, Zhang B, Gibertoni TB, Gates G, Glen M, Dai YC, Cui BK (2020) Multi-gene phylogeny and taxonomy of Amauroderma s. \at. (Gano- dermataceae). Persoonia 44(1): 206-239. https://doi.org/10.3767/persoonia.2020.44.08 Sun YF, Xing JH, He XL, Wu DM, Song CG, Liu S, Vlasak J, Gates G, Gibertoni TB, Cui BK (2022) Species diversity, systematic revision and molecular phylogeny of Ganodermataceae Taxonomy and phylogeny of Trametopsis 51 (Polyporales, Basidiomycota) with an emphasis on Chinese collections. Studies in Mycol- ogy 101: 287-415. https://doi.org/10.3767/10.3114/sim.2022.101.05 Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland. Thompson JD, Gibson TJ, Plewniak EF Jeanmougin F Higgins DG (1997) The ClustalxX windows interface: Fexible strategies for multiple sequence alignment aided by qual- ity analysis tools. Nucleic Acids Research 25(24): 4876-4882. https://doi.org/10.1093/ nar/25.24.4876 Tomsovsky M (2008) Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis. Czech Mycology 60(1): 1-11. https://doi. org/10.33585/cmy.60101 Tomsovsky M, Menkis A, Vasaitis R (2010) Phylogenetic relationships in European Ceriporio- psis species inferred from nuclear and mitochondrial ribosomal DNA sequences. Fungal Biology 114(4): 350-358. https://doi.org/10.1016/j.funbio.2010.02.004 Westphalen MC, TomSovsky M, Gugliotta AM, Rajchenberg M (2019) An overview of Antro- diella and related genera of Polyporales from the Neotropics. Mycologia 111(5): 813-831. https://doi.org/10.1080/00275514.2019.1633895 White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ri- bosomal RNA genes for phylogenetics. In: Innis MA, Gefand DH, Sninsky JJ, White JT (Eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 Wu SH, Nilsson HR, Chen CT, Yu SY, Hallenberg N (2010) The white-rotting genus Phan- erochaete is polyphyletic and distributed throughout the phleboid clade of the Polyporales (Basidiomycota). Fungal Diversity 42(1): 107-118. https://doi.org/10.1007/s13225-010- 0031-7 Wu EF, Chen JJ, Ji XH, Vlasak J, Dai YC (2017) Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, Physisporinus, Oxyporus, and Leucophellinus. Mycolo- gia 109: 749-765. https://doi.org/10.1080/00275514.2017.1405215