(83 MycoKeys MycoKeys 102: 301-315 (2024) DOI: 10.3897/mycokeys.102.114480 Research Article Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China Hai-Yan Wang", Xin Li'®, Chun-Bo Dong™®, Yan-Wei Zhang2®, Wan-Hao Chen?®, Jian-Dong Liang™®, Yan-Feng Han'® 1 Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, China 2 School of Biological Sciences, Guizhou Education University, Guiyang 550018, China 3 Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China Corresponding author: Yan-Feng Han (swallow1128@126.com) OPEN Qaceess Academic editor: Huzefa Raja Received: 20 October 2023 Accepted: 11 December 2023 Published: 7 March 2024 Citation: Wang H-Y, Li X, Dong C-B, Zhang Y-W, Chen W-H, Liang J-D, Han Y-F (2024) Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China. Mycokeys 102: 301-315. https://doi. org/10.3897/mycokeys.102.114480 Copyright: © Hai-Yan Wang et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract Rich and diverse fungal species occur in different habitats on the earth. Many new taxa are being reported and described in increasing numbers with the advent of molecular phylogenetics. However, there are still a number of unknown fungi that have not yet been discovered and described. During a survey of fungal diversity in different habitats in China, we identified and proposed two new species, based on the morphology and multi-gene phylogenetic analyses. Herein, we report the descriptions, illustrations and molecular phylogeny of the two new species, Bisifusarium keratinophilum sp. nov. and Ovatospora sinensis sp. nov. Key words: Fungal taxonomy, mesophilic fungus, phylogeny, thermophilic fungus, two new taxa Introduction The species diversity of fungi on earth is extremely rich, with some studies sug- gesting that there are as many as 5.1 million species of fungi (Blackwell 2011), while others believe that there are 3.8 million species of fungi on the earth (Hawksworth and Liicking 2017). More recent estimates suggest 2.5 million fungal species (Niskanen et al. 2023). With the rapid increase in fungal DNA se- quence data obtained, the species names and numbers of fungi are constantly updated (Wijayawardene et al. 2020). Fungi are one of the most diverse micro- bial communities on Earth and play a vital role in ecosystem processes and functions (Hyde et al. 2020). Meanwhile, fungi have an important influence on human life and production. On the one hand, they can produce a large number of biometabolites available to humans, such as various amino acids, enzymes, sugars, lipids, vitamins and antibiotics (Zhang et al. 2013; de Cassia Pereira et al. 2015; Pejin et al. 2019; Yokokawa et al. 2021; Arsenault et al. 2022; Mapook et al. 2022). On the other hand, they also infect humans, animals and plants and then cause great harm to human health and national economies (Fisher et al. 2012; Fisher et al. 2020; Zhang et al. 2023). At the same time, fungi widely exist 301 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae in various habitats, such as forests, grasslands, zoos, hospitals, agricultural land (Li et al. 2014; Shao et al. 2021; Yao et al. 2021; Liu et al. 2022). Due to factors such as global climate change, urban growth and environ- mental pollution, there is an increasingly accelerated loss of natural habitats worldwide, which, in turn, leads to a decrease in species diversity and the abun- dance of non-human organisms (Driscoll et al. 2018; Kurth et al. 2021). At pres- ent, the threat to species and their extinction rates have risen to dangerous levels threatening biological diversity. Latest data from the International Union for Conservation of Nature (IUCN) has fuelled growing societal concern, indi- cating that 28% of all assessed species are threatened with extinction, which is a nerve-wrackingly high figure (L6bI et al. 2023). In times of a biodiversity crisis, the community structure and species diversity of fungi are also inevitably affected by various factors. In many habitats, it is suspected that species are disappearing before they are discovered (Wang et al. 2018; L6bl et al. 2023). Therefore, it is necessary to accelerate the intensity and speed of investigating. Study on the diversity of fungal species on the earth should be one of the im- portant issues of modern biology (L6bI et al. 2023). Fortunately, our team has discovered many new fungal species during the investigation of fungal diversity in different habitats in China (Li et al. 2022a, b; Ren et al. 2022; Zhang et al. 2023; Wang et al. 2023). In this study, based on the morphology and multi-gene phylogenetic analyses, two new species from zoo soils were identified and described, respectively. Materials and methods Sample collection and fungal isolation Soil samples were collected from two zoos, Shandong Province, China. Sam- ples from 3-10 cm below the soil surface were collected, and placed in Ziploc plastic bags and brought back to the laboratory. Then, the 2 g collected sam- ples were placed into a sterile conical flask containing 20 ml sterile water and thoroughly shaken using a Vortex vibration meter. Next, the suspension was diluted to a concentration of 10°. Subsequently, 1 ml of the diluted sample was added to a sterile Petri dish and mixed with Sabouraud’s dextrose agar (SDA; peptone 10 g/I, dextrose 40 g/I, agar 20 g/I, 3.3 ml of 1% Bengal red aqueous solution) medium containing 50 mg/I penicillin and 50 mg/I streptomycin. After the plates were incubated at 25 °C and 45 °C for 1-2 weeks, single colonies were transferred from the plates to new potato dextrose agar (PDA, potato 200 g/I, dextrose 20 g/I, agar 20 g/l) plates. Morphological study The target strains were transferred to plates of malt extract agar (MEA), oat- meal agar (OA) and potato dextrose agar (PDA) and were incubated at 25 °C and 45 °C. After seven days, their colony characteristics (the colony colours and diameters) on the surface and reverse of inoculated Petri dishes were observed and recorded and microscopic characteristics (fungal hyphae and conidioge- nous structures) were examined and captured by making direct wet mounts with 25% lactic acid on PDA, with an optical microscope (DM4 B, Leica). The MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 302 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae ex-types of two new species were deposited in the China General Microbio- logical Culture Collection Center (CGMCC) and living cultures and dried holo- types were deposited in the Institute of Fungus Resources, Guizhou University (GZUIFR = GZAC). Taxonomic descriptions and nomenclature of two new spe- cies were recorded in MycoBank (https://www.mycobank.org/). DNA extraction, PCR amplification and sequencing Total genomic DNA was extracted using the BioTeke Fungus Genomic DNA Ex- traction kit (DP2032, BioTeke) following the manufacturer's instruction. Primer combinations such as ITS1/ITS4 (White et al. 1990), LROR/LR5 (Wang etal. 2022a), EF1-728F/EF2 (O’Donnell et al. 1998; Carbone and Kohn 1999), CAL-228F/CAL- 2Rd (Carbone and Kohn 1999; Lombard et al. 2015), rpb2-5F2/rpb2-7CR (Sung et al. 2007; O’Donnell et al. 2007) and T1/TUB4Rd (O’Donnell and Cigelnik 1997; Woudenberg et al. 2009) were used for amplification of the internal transcribed spacers (ITS), the 28S nrRNA locus (LSU), translation elongation factor 1-alpha gene region (tef7), calmodulin gene (cmdA), RNA polymerase II second largest subunit gene (rpb2) and beta-tubulin gene (tub2), respectively. The PCR products were sent to Quintarabio (Wuhan, China) for purification and sequencing. The new sequences were submitted to GenBank (https://www.ncbi.nim.nih.gov/) (Table 1). Table 1. Strain and GenBank accession included in phylogenetic analyses. Species Bisifusarium aseptatum Bisifusarium allantoides Bisifusarium biseptatum Bisifusarium dimerum Bisifusarium penicilloides Bisifusarium delphinoides Bisifusarium nectrioides Bisifusarium penzigii Bisifusarium domesticum Bisifusarium lunatum Bisifusarium tonghuanum Bisifusarium lovelliae Bisifusarium keratinophilum Strains LC13607 LC13608 UBOCC-A-120035 UBOCC-A-120036T UBOCC-A-120037 CBS 110311T MNHN-RF-05625T CBS 108944T UBOCC-A-120021T UBOCC-A-120034 VTT-D-041022 CBS 120718T CBS 110140 CBS 110310 CBS 176.31T CBS 116508 CBS 102407 CBS 244.82 CBS 632.76T CGMCC3.17369 CGMCC3.17370 BRIP 75047a CGMCC 3.23621T GZUIFR 22.371 GZUIFR 22.372 ITS MW016390 MW016391 MW654536 MW654548 MW654549 MW654547 MW654546 JQ434586 MW654542 MW654541 MW654535 EU926229 MW827603 EU926240 EU926245 EU926256 EU926221 EU926220 EU926224 KX790413 KX790415 0Q629340 OP693473 OP693474 OP693475 LSU MW016390 MW016391 MW654511 MW654523 MW654524 MW654522 MW654521 JQ434514 MW654517 MW654516 MW654510 EU926229 EU926240 EU926245 EU926256 EU926221 EU926220 EU926224 KX790414 KX790416 OP693469 OP693470 OP693471 MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 tef1 MW580430 MW580431 MW811075 MW811087 MW811088 MW811086 MW811085 KR673912 MW811081 MW811080 MW811074 EU926296 EU926302 EU926307 EU926312 EU926323 EU926288 EU926287 EU926291 KX790418 KX790420 OR168082 OR168083 OR168084 cmdA MW566257 MW566258 MW811017 MW811029 MW811030 MW811028 MW811027 KM231365 MW811023 MW811022 MW811016 KM231363 KM231362 KM231367 OR043998 OR043999 OR044000 rpb2 MW474376 MW474377 MW811060 MW811072 MW811073 MW811071 KM232363 MW811066 MW811065 MW811059 0Q626864 OR168079 OR168080 OR168081 tub2 MW533717 MW533718 MW811090 MW811102 MW811103 MW811101 MW811100 EU926400 MW811096 MW811095 MW811089 EU926362 EU926368 EU926373 EU926378 EU926389 EU926355 EU926354 EU926357 KX790417 KX790419 OR168085 OR168086 OR168087 Reference Wang et al. (2022b) Wang et al. (2022b) Savary et al. (2021) Savary et al. (2021) Savary et al. (2021) Savary et al. (2021) Savary et al. (2021) Lombard et al. (2015) Savary et al. (2021) Savary et al. (2021) Savary et al. (2021) Lombard et al. (2015) Park et al. (2019) Sun et al. (2017) Lombard et al. (2015) Sun et al. (2017) Sun et al. (2017) Sun et al. (2017) Lombard et al. (2015) Sun et al. (2017) Sun et al. (2017) Tan et al. (2023) This study This study This study 303 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Species Strains Longinectria lagenoides UBOCC-A-120039 Longinectria verticilliforme | UBOCC-A-120043 Ovatospora amygdalispora CBS 672.82T Ovatospora angularis LC3973 Ovatospora unipora CBS 109.83T Ovatospora brasiliensis CBS 140.50 Ovatospora medusarum CBS 148.67T Ovatospora mollicella CBS 583.83T Ovatospora CBS 251.75T pseudomollicella Ovatospora senegalensis CBS 728.84T Trichocladium asperum CBS 903.85T CBS 114580T CBS 127763T CBS 123565T Trichocladium acropullum Trichocladium amorphum Trichocladium antarcticum Trichocladium CBS 757.74T beniowskiae Trichocladium gilmaniellae CBS 388.75T Thermochaetoides dissita CBS 180.67T Thermochaetoides CBS 144.50T thermophila Ovatospora sinensis CGMCC40675T | GZUIFR 23.002 GZUIFR 23.003 Triangularia verruculosa CBS 148.77 Triangularia CBS 724.68T allahabadensis ITS MW654539 MW654540 KP336768 KX976689 KX976683 KX976684 KX976685 KX976686 KX976687 LT993632 LT993626 LT993628 LT993629 LT993635 LT993638 ORO16676 ORO16677 ORO16678 MK926874 MK926865 LSU tef1 cmdA rpb2 MW654514 | MW811078 | MW811020 | MW811063 MW654515 | MW811079 | MW811021 | MW811064 KP336817 KX976787 KX976781 KX976782 KX976783 KX976784 KX976785 LT993632 LT993626 LT993628 LT993629 LT993635 LT993638 MK919319 MK919314 ORO016679 ORO16680 ORO16681 MK926874 MK926865 MZ342991 KT149491 KX976902 KX976896 KX976897 KX976898 KX976899 KX976900 LT993551 LT993545 LT993547 LT993548 LT993554 LT993557 MK919375 KM655436 OR043992 0R043993 0R043994 MK876836 MK876827 tub2 MW811093 MW811094 MZ343030 KP336866 KX977037 KX977031 KX977032 KX977033 KX977034 KX977035 LT993713 LT993707 LT993709 LT993710 LT993716 LT993719 MK919433 MK919428 OR043995 OR043996 OR043997 MK926974 MK926965 Reference Savary et al. (2021) Savary et al. (2021) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2016) Wang et al. (2016) Wang et al. (2016) Wang et al. (2016) Wang et al. (2016) Wang et al. (2016) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) Wang et al. (2022a) This study This study This study Wang et al. (2022a) Wang et al. (2022a) Note: T=Ex-type; New isolates are in bold; The line “—” represents the absence of GenBank record; BRIP: Queensland Plant Pathology Herbarium, Australia; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CGMCC: The China General Microbiological Culture Collection Centre; GZUIFR: The Institute of Fungus Resources, Guizhou University, China; LC: Lei Cai’s personal culture collection, Beijing, China; MNHN: Museum National d’Histoire Naturelle culture collection, France; UBOCC: Universitée de Bretagne Occidentale Culture Collection, France; VTT: Culture Collection, Finland; cmdA: calm- odulin; ITS: the internal transcribed spacer region and intervening 5.8S nrRNA; LSU: 28S large subunit; rpb2: RNA polymerase II second largest subunit; tef7: translation elongation factor 1-alpha; tub2: B-tubulin. Phylogenetic analysis In this study, the relevant sequences were obtained from GenBank (Table1). The sequence set was aligned and trimmed in MEGA v.6.06 (Tamura et al. 2013). We performed single gene and multi-gene phylogenetic analysis using ITS, LSU, tef1, cmdA, rpb2 and tub2 gene and found that the topology structures of the single-gene and multi-gene phylogenetic trees were consistent in PhyloSuite v.1.16. Therefore, multi-gene phylogenetic analysis was chosen in this study. The concatenation of loci and phylogenetic analysis were processed, using the “Concatenate Sequence” function in PhyloSuite v.1.16 (Zhang et al. 2020). The Maximum Likelihood (ML) and the Bayesian Inference (BI) methods were used for the phylogenetic construction of each loci dataset. The ML analysis was conducted in IQ-TREE v.1.6.11 (Nguyen et al. 2015) with 1000 bootstrap tests using the ultrafast algorithm (Minh et al. 2013). The BI analysis was performed in MrBayes v.3.2 (Ronquist et al. 2012) and Markov chain Monte Carlo (MCMC) simulations were used for 2,000,000 generations with a sampling frequency of every 100 generations. The phylogenetic trees were visualised using FigTree version 1.4.3 and subsequently edited in Adobe Photoshop. MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 304 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae 1.00/91] 1.00/94 1.00/100 0.99/81 1.00/84 Results Phylogenetic analysis The ITS regions of all isolates were sequenced and BLASTn searched in NCBI. Our isolates were identified as two genera, Bisifusarium L. Lombard, Crous & W. Gams and Ovatospora X.Wei Wang, Samson & Crous, respectively. The ITS sequences of the isolated strains were less than 97% similarity to the closest strains in GenBank and were considered as the potential new species. To further determine the phylogenetic position of these isolated strains, we performed a multi-locus phylogenetic analysis, based on ITS, LSU, tef71, cmdA, rpb2 and tub2 gene. The phylogenetic trees (Figs 1, 3) using ML and BI analyses were consistent and strongly supported in most branches. The ML analysis for the combined dataset provided the best scoring tree. The best-fit evolutionary models for ML analysis and BI analysis are shown in Table 2. In this study, three isolates of the genus Bisifusarium clustered in a well-sep- arated clade with a high support value (BI/ML 1/100) (Fig. 1). Three isolates of the genus Ovatospora clustered together with a high support value (BI/ML 1.00/100| Bisifusarium aseptatum LC13607 Bisifusarium aseptatum LC13608 Bisifusarium domesticum CBS 102407 Bisifusarium domesticum CBS 244.82 Bisifusarium lunatum CBS 632.76T /983| Bisifusarium delphinoides CBS 110140 Bisifusarium delphinoides CBS 110310 Bisifusarium delphinoides CBS 120718T Bisifusarium nectrioides CBS 176.31T Bisifusarium penzigii CBS 116508 - Bisifusarium lovelliae BRIP 75047a '— Bisifusarium biseptatum CBS 110311 Bisifusarium dimerum CBS 108944T 1.00/100 ' Bisifusarium dimerum MNHN-REF-05625T 1.00/100; Bisifusarium tonghuanum CGMCC 3.17369 Bisifusarium tonghuanum CGMCC 3.17370 Bisifusarium penicilloides UBOCC-A-120021T Bisifusarium penicilloides VTT-D-041022 1.00/100 Bisifusarium keratinophilum CGMCC 3.23621T Bisifusarium keratinophilum GZUIFR 22.371 Bisifusarium keratinophilum GZUIFR 22.372 Bisifusarium allantoides UBOCC-A-120036T 1.00/100 | Bisifusarium allantoides UBOCC-A-120035 Bisifusarium allantoides UBOCC-A-120037 Longinectria lagenoides UBOCC-A-120039 Longinectria verticilliformis UBOCC-A-120043 Outgroup 0.06 Figure 1. Phylogenetic tree of the genus Bisifusarium constructed from the dataset of ITS, LSU, tef7, cmdA, rpb2 and tub2. Notes: Statistical support values (BI/ML) were shown at nodes. ML bootstrap values = 75% and posterior probabilities = 0.90 are shown above the internal branches. ‘—’ indicates the absence of statistical support (< 75% for bootstrap proportions from ML analysis; < 0.90 for posterior probabilities from Bayesian analysis). Three new strains are shown in blue font. BRIP: Queensland Plant Pathology Herbarium, Australia; CBS: CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; CG- MCC: The China General Microbiological Culture Collection Centre; GZUIFR: The Institute of Fungus Resources, Guizhou Uni- versity, China; LC: Lei Cai’s personal culture collection, Beijing, China; MNHN: Museum National d'Histoire Naturelle culture collection, France; UBOCC: Universitée de Bretagne Occidentale Culture Collection, France; VTT: Culture Collection, Finland. MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 305 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Table 2. The best-fit evolutionary models. Genus ITS LSU tef1 cmdA rpb2 tub2 Bisifusarium | ML analysis | TIM2e+I+G4 K2P TNe+R2 | TIM3et+!1+G4 | TIM3e+Il+G4 | TIM3et+l+G4 Bl analysis | SYM+I+G4 K2P K2P+G4 | SYM+l+G4 SYM+1+G4 SYM+1+G4 Ovatospora |MLanalysis| GTR+F+G4 | TIM3+F+I TIM3+F+G4 | HKY+F+I+G4 Bl analysis | GTR+F+G4 | GTR+F+l GTR+F+l+G4 | HKY+F+I+G4 1/100) (Fig. 3). Therefore, Bisifusarium keratinophilum H.Y. Wang, X. Li & Y.F. Han, sp. nov. and Ovatospora sinensis H.Y. Wang & Y.F. Han, sp. nov. are pro- posed according to the phylogenetic analysis. Taxonomy Sordariomycetes O.E. Erikss. & Winka Hypocreales Lindau Nectriaceae Tul. & C. Tul. Bisifusarium L. Lombard, Crous & W. Gams Bisifusarium keratinophilum H.Y. Wang, X. Li & Y.F. Han, sp. nov. MycoBank No: 849504 Fig. 2 Etymology. Referring to degradation properties of chicken feathers. Type. CHINA: Shandong Province, Jinan City, Jinan Zoo (36°42'14'N, 116°58'55"E), soil, July 2021, Xin Li & Yan-Feng Han, ex-type CGMCC 3.23621 = GZUIFR 22.370, dried holotype GZAC 22.370. Description. Culture characteristics: Colonies growing on MEA, OA and PDA after 7 days of incubation at 25 °C. On MEA, reaching up 20-25 mm diam.., thick villiform, cream (RAL9001) at the centre, oyster white (RAL1013) at the edge, mostly regular in the margin, reverse light ivory (RAL 1015); On OA, reaching up 25-35 mm diam.; pure white (RAL9010), thin, villiform, mostly regular in the margin, reverse tele grey 4 (RAL7047); On PDA, reaching up 25-30 mm diam.; cream (RAL9001), thin, short villiform, mostly regular in the margin, reverse cream (RAL9001). On PDA medium, Hyphae septate, hyaline, smooth, thick-walled, 1.5-3.5 um wide. Conidiophores arising from hyphae, solitary, smooth, mostly clavate, 5-25 x 1-2.5 um. Phialidic pegs arising from hyphae. Monophialides laterally on hy- phae or phialidic pegs, cylindrical, erect. Polyphialides absent. Macroconidia produced by monophialidic conidiophores, mostly 0-1septate, rarely 2-septate, mostly crescent, rarely clavate, 12—23.0 x 2.0-3.5 um (av. 16 x 2.5 um, n = 50). Microconidia produced by later phialidic pegs, monocelled, cymbiform, 6.0-9.5 x 1.5-2.5 um (av. 7.5 x 2.0 um, n = 50). Additional materials examined. CHINA: Shandong Province, Jinan City, Jinan Zoo (36°42'14"N, 116°58'55"E), soil, July 2021, living cultures GZUIFR 22.371, GZUIFR 22.372. Notes. Phylogenetically, our three strains (CGMCC 3.23621, GZUIFR 22.371 and GZUIFR 22.372) of Bisifusarium keratinophilum H.Y. Wang, X. Li & Y.F. Han sp. nov. clustered in a single separate clade with a high support value (BI/ML 1/100). Although it was closely related to B. allantoides O. Savary, M. Coton, E. MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 306 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae 5 h i Figure 2. Morphological characteristics of Bisifusarium keratinophilum sp. nov. a-c front and reverse of colony on MEA, OA and PDA after 7 days at 25 °C d, e conidiophores and macroconidia f phialidic pegs g hyphae h, i microconidia. Scale bars: 10 um (d-i). Coton & J.L. Jany and B. penicilloides O. Savary, M. Coton, E. Coton & J.L. Jany in the phylogenetic tree, B. allantoides had allantoidal macroconidia (Savary et al. 2021) and B. penicilloides had ellipsoidal and reniform macroconidia and absent microconidia (Savary et al. 2021). Bisifusarium keratinophilum can be distinguished from the other previously described species by having crescent and clavate macroconidia and cymbiform microconidia. Our team found that B. keratinophilum has the ability to degrade chicken feathers. Specific method: the spore suspension (10’spores per millilitre) was inoculated into the fermentation medium containing 1g chicken feathers and cultured in a shaking table at 150 rpm, 30 °C for 96 h, then the chicken feather residue was filtered, dried and weighed. This fungus had a good degradation effect on chicken feathers with the degradation rate of 52.02%. Sordariomycetes O.E. Erikss. & Winka Sordariales Chadef. ex D. Hawksw. & O.E. Erikss. Chaetomiaceae G. Winter Ovatospora X.Wei Wang, Samson & Crous MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 307 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Ovatospora sinensis H.Y. Wang &Y.F. Han, sp. nov. MycoBank No: 850259 Fig. 4 Etymology. Refers to China where the species was discovered. Type. CHINA: Shandong Province, Qingdao City, Qingdao Zoo (35°59'14'N, 120°3'53"E), soil, July 2021, Hai-Yan Wang & Yan-Feng Han, ex-type CGMCC 40675=GZUIFR 23. 001, dried holotype GZAC 23. 001. Description. Culture characteristics: Colonies growing on MEA, OA and PDA after 7 days of incubation at 45 °C. Colony on MEA reaching about 35-45 mm diam., pure white (RAL9010), densely villiform; irregular in the margin; reverse Ovatospora sinensis CGMCC 40675T 1.00/100| Ovatospora sinensis GZUIFR 23.002 -/719 Ovatospora sinensis GZUIFR 23.003 SY | =" Ouaiespors amyudalspore CBS 672.221 Ovatospora senegalensis CBS 728.841 Ovatospora brasiliensis CBS 140.50 Ovatospora mollicella CBS 383.83T 1.00/97 Ovatospora pseudomollicella CBS 251.75T Ovatospora angularis LC3973 Chaetomiaceae Ovatospora unipora CBS 109.83T 1.00/91; 1.00/100 Ovatospora medusarum CBS 148.67T Trichocladium acropullum CBS 114580T 0.98/78 1.00/100) 27#chocladium amorphum CBS 1277631 100/100 — Trichocladium beniowskiae CBS 757.741 1.00/100 Trichocladium antarcticum CBS 123565T 1.00/99 Trichocladium asperum CBS 903.85T 1.00/100 Trichocladium gilmaniellae CBS 388.75T Thermochaetoides dissita CBS 180.671 1.00/100 Thermochaetoides thermophila CBS 144.50T Triangularia verruculosa CBS 148.77 1.00/100 Podosporaceae (Outgroup) Triangularia allahabadensis CBS 724.68T 0.06 Figure 3. Phylogenetic tree of the genus Ovatospora constructed from ITS, LSU, tub2 and rpb2. Notes: Statistical support values (BI/ML) were shown at nodes. ML bootstrap values = 75% and posterior probabilities = 0.90 are shown above the internal branches. ‘-’ indicates the absence of statistical support (< 75% for bootstrap proportions from ML analysis; < 0.90 for posterior probabilities from Bayesian analysis). Three new strains are shown in blue. CBS: CBS-KNAW Fungal Bio- diversity Centre, Utrecht, The Netherlands; CGMCC: The China General Microbiological Culture Collection Centre; GZUIFR: The Institute of Fungus Resources, Guizhou University, China; LC: Lei Cai’s personal culture collection, Beijing, China. MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 308 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Figure 4. Morphological characteristics of Ovatospora sinensis sp. nov. a-c reverse and front of colony on MEA, OA and PDA after7 days at 45 °C d-h conidiophores and conidia i hyphae. Scale bars: 10 um (d-i). light ivory (RAL1015), radial lines, irregular in the margin. Colony on OA reach- ing about 80-90 mm diam., grey white (RAL9002), sparsely aerial mycelium, mostly regular in the margin; reverse grey white (RAL9002). Colony on PDA reaching about 45-50 mm diam., creamy (RAL9001), densely villiform obvi- ously powdery conidia group, sparsely spongy, irregular in the margin; reverse creamy (RAL9001), plicated at the centre, irregular in the margin. Hyphae septate, hyaline, smooth, thin-walled, 1.5-3.5 um wide. Conidio- phores arising from hyphae, 2-30 x 1.5-3.5 um, solitary or branched, smooth, mostly clavate, septate. Conidiogenous cell reduced to Conidiophores. Conidia on conidiogenous or acrogenous directly on the hyphae, hyaline or light-brown, mostly globose, rarely obovate, thick-walled, 6.0-10.5 um diam. (av. 8.0 um). Sexual morph unknown. Additional specimens examined. CHINA. Shandong Province, Qingdao City, Qingdao Zoo (35°59'14"N, 120°3'53"E), soil, July 2021, Hai-Yan Wang & Yan- Yeng Han, living cultures GZUIFR 23.002, GZUIFR 23.003. Notes. Phylogenetically, our three strains (CGMCC 40675, GZUIFR 23.002 and GZUIFR 23.003) of Ovatospora sinensis H.Y. Wang &Y.F. Han sp. nov. clustered together in a single clade with a high support value (BI/ML 1/100). MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 309 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Although it was closely related to O. amygdalispora (Udagawa & T. Muroi) X. Wei Wang & Houbraken and O. senegalensis (Ames) X. Wei Wang & Samson, it has an apparent separate subclade. Morphologically, O. amygdalispora and O. senegalensis only have the sexual structures, while Ovatospora sinensis sp. nov. only produce an asexual morph with clavate and solitary or ramiform con- idiophores and globose conidia. So far, Ovatospora sinensis sp. nov. is the only species that produces an asexual morph and is a thermophilic fungus in the genus Ovatospora. Discussion Lombard et al. (2015) re-estimated the status of those genera lacking DNA se- quence data in Nectriaceae, based on the morphology and multi-gene phyloge- netic analyses and the new genus Bisifusarium with the type B. dimerum (Penz.) L. Lombard & Crous was proposed, which formed a well-supported clade (ML = 100%, BYPP = 1.0) and separated from the clade of Fusarium. Therefore, these fusarium-like species including B. biseptatum (Schroers, Summerbell & O’Don- nell) L. Lombard & Crous, B. delphinoides (Schroers, Summerbell, O’Donnell & Lampr.) L. Lombard & Crous, B. dimerum, B. domesticum (Fr.) L. Lombard & Crous, B. lunatum (Ellis & Everh.) L. Lombard & Crous, B. nectrioides (Wollenw.) L. Lombard & Crous Schroers, Summerbell & O'Donnell) and B. penzigii (Schro- ers, Summerbell & O’Donnell) L. Lombard & Crous, were transferred from the genus Fusarium Link to this new genus Bisifusarium. The genus Bisifusarium produces macroconidia below three septa and forms lateral phialidic pegs aris- ing from the hyphae, which can be distinguished from the other species in the genus Fusarium (Schroers et al. 2009; Lombard et al. 2015). Recently, several new species in genus Bisifusarium have been published. Presently, Bisifusarium contains fifteen species records in the Index Fungorum (http://www.indexfun- gorum.org/Names/Names.asp, retrieval on 18 October 2023). Here, excluding synonyms and adding B. keratinophilum sp. nov., the genus Bisifusarium has a total of fourteen species. Based on the morphology and phylogenetic analysis of a combined data- set of ITS, LSU, rpb2and tub2 sequence data, Wang et al. (2016) redefined the generic concept of Chaetomium Kunze and Ovatospora X. Wei Wang, Sam- son & Crous with the type O. brasiliensis (Batista & Pontual) X. Wei Wang & Samson was proposed, which formed a well-supported clade and separated from the Chaetomium clade. Therefore, these chaetomium-like species includ- ed O. brasiliensis (Batista & Pontual) X. Wei Wang & Samson, O. medusarum (Meyer & Lanneau) X. Wei Wang & Samson, O. mollicella (Ames) X. Wei Wang & Samson, O. senegalensis (Ames) X. Wei Wang & Samson and O. unipora (Aue & Miller) X. Wei Wang & Samson. Simultaneously, 0. pseudomollicella X. Wei Wang & Samson sp. nov. was introduced. In addition, based on the results of the phylogeny and molecular data analyses, two new combinations, O. amyg- dalispora (Udagawa & T. Muroi) X.Wei Wang & Houbraken and O. angularis (Yu Zhang & L. Cai) X.Wei Wang & Houbraken from Chaetomium were proposed by Wang et al. (2022a). As of October 2023, the genus Ovatospora contains nine species: O. amygdalispora, O. angularis, O. brasiliensis, O. medusarum, O. molli- cella, O. pseudomollicella, O. senegalensis, Ovatospora sinensis and O. unipora. MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 310 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding The work was supported by “Hundred” Talent Projects of Guizhou Province (Qian Ke He [2020] 6005), the National Natural Science Foundation of China (no. 32060011, 32160007, 32260003) and Guizhou Provincial Department of Education Characteristic Field Project [QianJiaohe KY character [2021]073]. Author contributions Sampling and fungal isolation: Hai-Yan Wang, Xin Li and Yan-Feng Han; molecular bi- ology analysis and phylogenetic analysis: Chun-Bo Dong and Wan-Hao Chen; micros- copy: Hai-Yan Wang and Yan-Wei Zhang; original draft preparation: Hai-Yan Wang and Yan-Feng Han; review and editing: Hai-Yan Wang, Xin Li, Chun-Bo Dong, Wan-Hao Chen, Jian-Dong Liang; Funding: Yan-Wei Zhang and Yan-Feng Han. All authors reviewed and approved the final manuscript. Author ORCIDs Hai-Yan Wang ® https://orcid.org/0000-0001-9190-0490 Xin Li © https://orcid.org/0000-0001-7910-1469 Chun-Bo Dong ® https://orcid.org/0000-0001-7074-5700 Yan-Wei Zhang © https://orcid.org/0000-0003-1251-5821 Wan-Hao Chen ® https://orcid.org/0000-0001-7240-6841 Jian-Dong Liang ® https://orcid.org/0000-0002-3939-3900 Yan-Feng Han ® https://orcid.org/0000-0002-8646-3975 Data availability All of the data that support the findings of this study are available in the main text or Supplementary Information. References Arsenault ER, Liew JH, Hopkins JR (2022) Substrate composition influences amino acid carbon isotope profiles of fungi: Implications for tracing fungal contributions to food webs. Environmental Microbiology 24(4): 1462-2912. https://doi.org/10.1111/1462- 2920.15961 Blackwell M (2011) The fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany 98(3): 426-438. https://doi.org/10.3732/ajb. 1000298 Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553-556. https://doi.org/10.1080/0027 5514.1999.12061051 de Cassia Pereira J, Paganini Marques N, Rodrigues A, Brito de Oliveira T, Boscolo M, Da Silva R, Gomes E, Bocchini Martins DA (2015) Thermophilic fungi as new sources MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 311 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology 118(4): 928-939. https://doi. org/10.1111/jam.12757 Driscoll DA, Bland LM, Bryan BA, Newsome TM, Nicholson E, Ritchie EG, Doherty TS (2018) A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nature Ecology & Evolution 2(5): 775-781. https://doi.org/10.1038/s41559-018- 0504-8 Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393): 186-194. https://doi.org/10.1038/nature10947 Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE (2020) Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11(3): e00449-e20. https://doi. org/10.1128/mBio.00449-20 Hawksworth DL, Licking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5(4): 10-1128. https://doi.org/10.1128/microbiolspec. FUNK-0052-2016 Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu J-K, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Thongklang N, Wang Y, Gafforov Y, Gareth Jones EB, Lumyong S (2020) The num- bers of fungi: Is the descriptive curve flattening? Fungal Diversity 103(1): 219-271. https://doi.org/10.1007/s13225-020-00458-2 Kurth T, Wibbels G, Portafaix A, Meyer zum Felde A, Zielcke S (2021) The Biodiversity Crisis is a Business Crisis. Boston Consulting Group, Boston, 50 pp. Li YQ, Cui ZQ, Hu DM (2014) Coprophilous Fungi from Different Fecal Substrates in Kunming Zoo. Journal of Fungal Research 12(2): 88-95. https://doi.org/10.13341/j. jfr.2014.1001 Li X, Zhang ZY, Ren YL, Chen WH, Liang JD, Pan JM, Huang JZ, Liang ZQ, Han YF (2022a) Morphological characteristics and phylogenetic evidence reveal two new species of Acremonium (Hypocreales, Sordariomycetes). MycoKeys 91: 85-96. https://doi. org/10.3897/mycokeys.91.86257 Li X, Zhang ZY, Chen WH, Liang JD, Huang JZ, Han YF, Ling ZQ (2022b) A new species of Arthrographis (Eremomycetaceae, Dothideomycetes), from the soil in Guizhou, Chi- na. Phytotaxa 538(3): 175-181. https://doi.org/10.11646/phytotaxa.538.3.1 Liu YL, Ren GR, Liu S, Wang L, Li YH, Zhao J, Qiu JZ (2022) Macrofungal diversity in conif- erous forests and grassland of Xinjiang. Junwu Xuebao 41(7): 1021-1034. LObl |, Klausnitzer B, Hartmann M, Krell FT (2023) The silent extinction of species and taxonomists—An appeal to science policymakers and legislators. Diversity 15(10): 1053. https://doi.org/10.3390/d15101053 Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Studies in Mycology 80(1): 189-245. https://doi.org/10.1016/j.simy- co.2014.12.002 Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Cmokova A, Surup F, Kuhnert E, Pao- mephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmou- di T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M (2022) Ten decadal advances in fungal biology MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 312 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae leading towards human well-being. Fungal Diversity 116(1): 547-614. https://doi. org/10.1007/s13225-022-00510-3 Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phyloge- netic bootstrap. Molecular Biology and Evolution 30(5): 1188-1195. https://doi. org/10.1093/molbev/mst024 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Bi- ology and Evolution 32(1): 268-274. https://doi.org/10.1093/molbev/msu300 Niskanen T, Lucking R, Dahlberg A, Gaya E, Suz LM, Mikryukov V, Liimatainen K, Druzhini- na |, Westrip JRS, Mueller GM, Martins-Cunha K, Kirk P Tedersoo L, Antonelli A (2023) Pushing the frontiers of biodiversity research: Unveiling the global diversity, distribu- tion, and conservation of fungi. Annual Review of Environment and Resources 48(1): 149-176. https://doi.org/10.1146/annurev-environ-1 12621-090937 O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylo- genetics and Evolution 7(1): 103-116. https://doi.org/10.1006/mpev.1996.0376 O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sci- ences of the United States of America 95(5): 2044-2049. https://doi.org/10.1073/ pnas.95.5.2044 O'Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA, Benjamin L, Lindsley M, Padhye A, Geiser DM, Ward TJ (2007) Phylogenetic diversity and micro- sphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Jour- nal of Clinical Microbiology 45(7): 2235-2248. https://doi.org/10.1128/JCM.00533-07 Park JH, Oh J, Song JS, Kim J, Sung GH (2019) Bisifusarium delphinoides, an emerging opportunistic pathogen in a burn patient with diabetes mellitus. Mycobiology 47(3): 340-345. https://doi.org/10.1080/12298093.2019.1628521 Pejin B, Teanovi K, Jakovljevi D, Kaiarevi S (2019) The polysaccharide extracts from the fungi Coprinus comatus and Coprinellus truncorum do exhibit AChE inhibitory activity. Natural Product Research 33(6): 1478-6419. https://doi.org/10.1080/14786419.20 17.1405417 Ren YL, Zhang ZY, Chen WH, Liang JD, Han YF, Liang ZQ (2022) Morphological and phy- logenetic characteristics of Phaeomycocentrospora xinjangensis (Pleosporales, Do- thideomycetes), a new species from China. Phytotaxa 558(1): 125-132. https://doi. org/10.11646/phytotaxa.558.1.9 Ronquist F, Teslenko M, van der Mark P Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029 Savary O, Coton M, Frisvad JC, Nodet P, Ropars J, Coton E, Jany JL (2021) Unexpected Nectriaceae species diversity in cheese, description of Bisifusarium allantoides sp. nov., Bisifusarium penicilloides sp. nov., Longinectria gen. nov. lagenoides sp. nov. and Longinectria verticilliforme sp. nov. Mycosphere 12(1): 1077-1100. https://doi. org/10.5943/mycosphere/12/1/13 Schroers HJ, O'Donnell K, Lamprecht SC, Kammcyer PL, Johnson §S, Sutton DA, Rinaldi MG, Geiser DM, Summerbell RC (2009) Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 101(1): 44-70. https://doi.org/10.3852/08-002 MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 313 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Shao QY, Dong CB, Zhang ZY, Han YF, Liang ZQ (2021) Effects of Perilla frutescens on the fungal community composition and ecological guild structure in a hospital grass- plot soil. Junwu Xuebao 40(5): 1008-1022. https://doi.org/10.13346/j.mycosyste- ma.200261 Sun BD, Zhou YG, Chen AJ (2017) Bisifusarium tonghuanum (Nectriaceae), a novel spe- cies of Fusarium-like fungi from two desert oasis plants. Phytotaxa 317(2): 123-129. https://doi.org/10.11646/phytotaxa.317.2.4 Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44(3): 1204-1223. https://doi.org/10.1016/j.ympev.2007.03.011 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolu- tionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12): 2725- 2729. https://doi.org/10.1093/molbev/mst197 Tan YP, Shivas RG (2023) Novel species of microfungi from Australia. Index of Austra- lian Fungi No.5 1-12. https://doi.org/10.5281/zenodo.77651 60 Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Studies in Mycology 84(1): 145-224. https://doi. org/10.1016/j.simyco.2016.11.005 Wang Mx, Liu KY, Xing YJ (2018) Association Analysis of Soil Microorganism and Plant Species Diversity Under Climate Change. Zhongguo Nongxue Tongbao 34(20): 111- 117. http://www.casb.org.cn Wang XW, Han PJ, Bai FY, Luo A, Bensch K, Meijer M, Kraak B, Han DY, Sun BD, Crous PW, Houbraken J (2022a) Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Studies in Mycology 101(1): 121-243. https:// doi.org/10.3114/sim.2022.101.03 Wang MM, Crous PW, Sandoval-Denis M, Han SL, Liu F, Liang JM, Duan WJ, Cai L (2022b) Fusarium and allied genera from China: Species diversity and distribution. Persoonia 48(1): 1-53. https://doi.org/10.3767/persoonia.2022.48.01 Wang HY, Zhang ZY, Ren YL, Shao QY, Li X, Chen WH, Liang JD, Liang ZQ, Han YF (2023) Multiverruca sinensis gen. nov., sp. nov., a thermotolerant fungus isolated from soil in China. International Journal of Systematic and Evolutionary Microbiology 73(2): e005734. https://doi.org/10.1099/ijsem.0.005734 White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fun- gal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18(1): 315-322. https://doi.org/10.1016/B978-0-12-3721 80-8.50042-1 Wijayawardene NN, Hyde KD, Al-Ani L, Tedersoo L, Ags SF (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11(1): 1060-1456. https://doi.org/10.5943/myco- sphere/11/1/8 Woudenberg JHC, Aveskamp MM, de Gruyter J, Spiers AG, Crous PW (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22(1): 56-62. https://doi.org/10.3767/003158509X427808 Yao ZT, Yang YC, Yao X, He T, Zheng X, Meng YC, Zou CW (2021) Effects of different crop rotation modes on fungal community in potato rhizosphere soil. Nanfang Nongye Xuebao 52(5): 1255-1262. https://doi.org/10.3969/j.issn.2095-1191.2021.05.015 Yokokawa D, Tatematsu S, Takagi R, Saga Y, Kushiro T (2021) Synthesis of aminoacylat- ed ergosterols: A new lipid component of fungi. Steroids 169(26): e108823. https:// doi.org/10.1016/j.steroids.2021.108823 MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 314 Hai-Yan Wang et al.: New species, Chaetomiaceae, Nectriaceae Zhang YW, Han YF, Liu X, Liang ZQ (2013) Screening of new resources of natural vita- min e producing fungi from soil. Hubei Agricultural Sciences. 52 (17): 4066-4068. [+4082.] https://doi.org/10.14088/j.cnki.issn0439-8114.2013.17.045 Zhang D, Gao FL, Jakovli¢ |, Zou H, Zheng J, Li WX, Wang GT (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20(1): 348-355. https://doi.org/10.1111/1755-0998.13096 Zhang ZY, Li X, Chen WH, Liang JD, Han YF (2023) Culturable fungi from urban soils in China II, with the description of 18 novel species in Ascomycota (Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). MycoKeys 98: 167-220. https://doi.org/10.3897/mycokeys.98.102816 Supplementary material 1 The alignments used in the phylogenetic analysis Authors: Hai-Yan Wang, Yan-Feng Han Data type: zip Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited. Link: https://doi.org/10.3897/mycokeys.102.114480.suppl1 MycoKeys 102: 301-315 (2024), DOI: 10.3897/mycokeys.102.114480 315