683 MycoKeys MycoKeys 103: 129-165 (2024) DOI: 10.3897/mycokeys.103.107935 Research Article Rostrupomyces, a new genus to accommodate Xerocomus sisongkhramensis, and a new Hemileccinum species (Xerocomoideae, Boletaceae) from Thailand Santhiti Vadthanarat'?®, Bhavesh Raghoonundon™, Saisamorn Lumyong?**, Olivier Raspé'®”© N DOD oo FBP WW NYP — School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand Academy of Science, The Royal Society of Thailand, Bangkok, Thailand Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium Service Général de I’Enseignement Supérieur et de la Recherche Scientifique, Fédération Wallonie-Bruxelles, Brussels, Belgium Corresponding author: Olivier Raspé (olivier.ras@mfu.ac.th) OPEN Qaccess This article is part of: Diversity, taxonomy, and systematics of macrofungi from tropical Asia Edited by Olivier Raspé, Rui-Lin Zhao, Jennifer Luangsa-ard Academic editor: Rui-Lin Zhao Received: 13 June 2023 Accepted: 6 March 2024 Published: 28 March 2024 Citation: Vadthanarat S, Raghoonundon B, Lumyong S, Raspé 0 (2024) Rostrupomyces, anew genus to accommodate Xerocomus sisongkhramensis, and a new Hemileccinum species (Xerocomoideae, Boletaceae) from Thailand. MycoKeys 103: 129-165. https://doi.org/10.3897/ mycokeys.103.107935 Copyright: © Santhiti Vadthanarat et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract A new genus, Rostrupomyces is established to accommodate Xerocomus sisongkhra- mensis based on multiple protein-coding genes (atp6, cox3, tefl, and rpb2) analyses of a wide taxon sampling of Boletaceae. In our phylogeny, the new genus was sister to Rubinosporus in subfamily Xerocomoideae, phylogenetically distant from Xerocomus, which was highly supported as sister to Phylloporus in the same subfamily Xeroco- moideae. Rostrupomyces is different from other genera in Boletaceae by the following combination of characters: rugulose to subrugulose pileus surface, white pores when young becoming pale yellow in age, subscabrous stipe surface scattered with granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. In addition, Hemilecci- num inferius, also from subfamily Xerocomoideae, is newly described. Detailed descrip- tions and illustrations of the new genus and new species are presented. Key words: atp6, Boletales, cox3, fungal diversity, multigene phylogeny, one new spe- cies, taxonomy, Tropical Asia Introduction Xerocomoideae Singer, which is one of the six subfamilies in Boletaceae Che- vall, was established in 1945 with Xerocomus Quel. as the typus. At present, the subfamily consists of 12 genera, namely Alessioporus Gelardi, Vizzini & Simo- nini, Amylotrama Bloomfield, Davoodian, Trappe & T. Lebel, Aureoboletus Pou- zar, Boletellus Murrill, Heimioporus E. Horak, Hemileccinum Sutara, Hourangia Xue T. Zhu & Zhu L. Yang, Phylloporus Quél., Pulchroboletus Gelardi, Vizzini & Simonini, Rubinosporus Vadthanarat, Raspé & Lumyong, Veloboletus Fechner & 129 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Halling, and Xerocomus (Sutara 2008; Gelardi et al. 2014; Wu et al. 2014; Zhu et al. 2015; Wu et al. 2016; Crous et al. 2020; Lebel et al. 2022; Vadthanarat et al. 2022). The typical characters of species in this subfamily are boletoid or phylloporoid, rarely sequestrate basidiomata; dry or viscid pileus with smooth or subtomentose to tomentose pellis; absence or rarely presence of a veil; off- white, yellowish white, yellowish to yellow context; at least some basidiome parts often bluing, sometimes reddening or unchanging; smooth or ornament- ed stipe surface; hymenophore yellowish to yellow to bright yellow or cream to dull yellow to yellow to gray in sequestrate forms; basidiospores with bacillate, reticulate, tiny warts, pinholes, longitudinally striate, pitted ornamentations, or occasionally smooth; spore deposit with more or less olive-brown tint, rarely dark ruby (e. g. Gelardi et al. 2014; Wu et al. 2014; Zhu et al. 2015; Wu et al. 2016; Crous et al. 2020; Lebel et al. 2022; Vadthanarat et al. 2022). Hemileccinum, one of the genera belonging to the Xerocomoideae, was es- tablished in 2008 to accommodate two Boletus species, namely B. depilatus Redeuilh and B. impolitus Fr. In 2012, a new genus named Corneroboletus N.K. Zeng & Zhu L. Yang was established to accommodate Boletus indecorus Mas- see (Zeng et al. 2012). However, Corneroboletus was later synonymized with Hemileccinum (Wu et al. 2016). Hemileccinum currently comprises 13 species worldwide, namely H. albidum Mei Xiang Li, Zhu L. Yang & G. Wu, H. brevis- porum Mei Xiang Li, Zhu L. Yang & G. Wu, H. brunneotomentosum (B. Ortiz) Nitson & J.L. Frank, H. depilatum (Redeuilh) Sutara, H. ferrugineipes Mei Xiang Li, Zhu L. Yang & G. Wu, H. floridanum J.A. Bolin, A.E. Bessette, A.R. Bessette, L.V. Kudzma, A. Farid & J.L. Frank, H. hortonii (A.H. Sm. & Thiers) M. Kuo & B. Ortiz, H. impolitum (Fr.) Sutara (typus), H. indecorum (Massee) G. Wu & Zhu L. Yang, H. parvum Mei Xiang Li, Zhu L. Yang & G. Wu, H. rubropunctum (Peck) Halling & B. Ortiz, H. rugosum G. Wu & Zhu L. Yang, H. subglabripes (Peck) Halling (Index Fungorum, accessed on 23 March 2023). Hemileccinum species share the following combination of characters: boletoid basidiomata, glabrous to subtomentose, smooth to rugose pileus surface, which turns violet with NH, vapours; tubes depressed around the stipe apex, pores at first light yellow to deep yellow becoming olive-yellow in age, concolorous with tubes, unchanging; olive spore deposit; central stipe, whose surface is always ornamented with scales concolorous with stipe, unchanging; pale yellow to light yellow context, unchanging; pileipellis a trichodermium with broad hyphae or an epithelium, sometime with filamentous terminal elements; pleurocystidia present, fusoid to lageniform; spores boletoid, subfusoid or ellipsoid in face view, smooth under light microscope, irregularly tiny warted and pinholed or rarely smooth under SEM; clamp connections absent (Sutara 2008; Halling et al. 2015; Wu et al. 2016; Index Fungorum 443:1, 2020; Kuo and Ortiz-Santana 2020; Farid et al. 2021; Li et al. 2021). The first study of poroid mushrooms from Thailand was published in 1902, with descriptions of five new species, namely Boletus lacunosus Rostr. [current name: Austroboletus rostrupii (Syd. & P. Syd.) E. Horak], Boletus costatus Rostr., Suillus changensis Rostr. [current name: Boletus changensis (Rostr.) Sacc. & D. Sacc.], Suillus hygrophanus Rostr. [current name: Boletus hygrophanus (Rostr.) Sacc. & D. Sacc.], and Suillus velatus Rostr. [current name: Veloporphyrellus vela- tus (Rostr.) Y.C. Li & Zhu L. Yang] (Rostrup 1902; Saccardo and Saccardo 1905; Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 130 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Horak 1980; Li et al. 2014). At that time, they were classified to belong to the Polyporaceae; however, later they were all moved to family Boletaceae. No new taxa in Boletaceae were described from Thailand during the following one hun- dred years. It is only in 2006 that again a new species, Rhodactina incarnata Zhu L. Yang, Trappe & Lumyong, was described from Chiang Mai Province, northern Thailand (Yang et al. 2006). In 2009, Spongiforma thailandica Desjardin, Man- fr. Binder, Roekring & Flegel was described as a new genus and species from Nakorn Nayok Province, central Thailand (Desjardin et al. 2009). After that, mo- lecular phylogenetic analyses have been widely used in Boletaceae taxonomy. Two more new Boletaceae genera including Cacaoporus Raspé & Vadthanarat and Rubinosporus Vadthanarat, Raspé & Lumyong were described from Chiang Mai Province, northern Thailand (Vadthanarat et al. 2019b, 2022). During that period, twenty-seven new species were also described from the country, among which nine belong in subfamily Xerocomoideae, namely Heimioporus subcosta- tus Vadthanarat, Raspé & Lumyong, Phylloporus castanopsidis M.A. Neves & Halling, P. dimorphus M.A. Neves & Halling, P. infuscatus M.A. Neves & Halling, Phylloporus pusillus Raspé, K.D. Hyde & Chuankid, P. rubiginosus M.A. Neves & Halling, R subrubeolus Chuankid, K.D. Hyde & Raspé, Rubinosporus auriporus Vadthanarat, Raspé & Lumyong, Xerocomus sisongkhramensis Khamsuntorn, Pinruan & Luangsa-ard (Neves et al. 2012; Halling et al. 2014; Raspé et al. 2016; Vadthanarat et al. 2018; Chuankid et al. 2019; Vadthanarat et al. 2019a, 2019b, 2020; Chuankid et al. 2021; Raghoonundon et al. 2021; Vadthanarat et al. 2021; Tan et al. 2022; Vadthanarat et al. 2022). In this study, several collections of boletes belonging to the subfamily Xe- rocomoideae were obtained from northern and northeastern Thailand. They were carefully studied based on morphology as well as family-wide and sub- family-wide phylogenetic analyses. Some of them were identified as a new He- mileccinum species. Some collections were identified as X. sisongkhramensis based on morphological characters and the megablast result of the ITS region. However, following multiple gene phylogenetic analyses based on four pro- tein-coding gene (atp6, cox3, tefl, and rpb2), X. sisongkhramensis appeared phylogenetically distant from other Xerocomus species and distinct from ex- isting genera in Boletaceae. Moreover, the detailed morphology did not fit any known Xerocomoideae genus. Therefore, Rostrupomyces is introduced to ac- commodate X. sisongkhramensis. Finally, anew Hemileccinum species is intro- duced with full descriptions and illustrations. Materials and methods Specimens collecting Fresh basidiomata of boletes in subfamily Xerocomoideae were collected in Chiang Mai and Chiang Rai provinces in northern Thailand, and Ubon Ratcha- thani and Sisaket provinces in northeastern Thailand between 2015 and 2021. They were photographed in the field and then wrapped in aluminum foil for later description in the laboratory on the same day. The specimens were then dried in an electric drier at 45-50 °C. Examined specimens were deposited at MFU, BKF or CMUB herbaria. MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 134 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Morphological study Macroscopic descriptions were made based on the detailed field notes and pho- tos of fresh basidiomata. Color codes were given based on Kornerup and Wan- scher (1978). Macrochemical reactions (color reactions) were observed using aqueous solutions of 10% potassium hydroxide (KOH), and 28-30% NH,OH. Microscopic structures were observed from dried specimens rehydrated in 5% KOH or 1% ammoniacal Congo red. For the measurements of microscopic features, a minimum of 50 basidiospores or 20 for other structures, were ran- domly chosen and measured under a Nikon Eclipse Ni compound microscope using NIS-Elements D version 5.10 software. The notation ‘[x/y/z]’ represents the number of basidiospores ‘x’ measured from the number of basidiomata ‘y’ of the number of collections ‘z’. The measurements of microscopic structures are presented in the following format (a—) b—c-d (-e), in which ‘c’ represents the average, ‘b’ is the 5" percentile, ‘d’ is the 95" percentile, and ‘a’ and ‘e’ the extreme values, shown in parentheses. Q is the length/width ratio. Sections of the pileipellis were cut radially, perpendicularly to the surface halfway between the centre and margin of pileus. Sections of stipitipellis were taken halfway along the stipe length (Li et al. 2011; Hosen et al. 2013; Li et al. 2014; Zhu et al. 2015). All line drawings of microscopic features were drawn by free hand using an Olympus compound microscope model CX41 with Olympus Camera Lucida model U-DA. For scanning electron microscopy, small fragments of dried hy- menophore were mounted directly onto a SEM stub with double-sided carbon tape. The samples were coated with gold, examined and photographed using a TESCAN MIRA‘s 4" generation SEM. DNA extraction, PCR amplification and DNA sequencing Genomic DNA was extracted from tissue of dried specimen or fresh tissue preserved in CTAB, using a CTAB isolation procedure adapted from Doyle and Doyle (1990). Portions of the genes atp6, cox3, rpb2, and tefl were amplified by polymerase chain reaction (PCR). The primer pairs ATP6-1M40F/ATP6-2M (Raspé et al. 2016), COX3M1-F/ COX3M1-R (Vadthanarat et al. 2019b), DRPB2- 6F/bRPB2-7.1R (Matheny 2005), and EF1-983F/EF1-2218R (Rehner and Buck- ley 2005) were used to amplify atp6, cox3, rpb2, and tef1, respectively. PCR products were purified by adding 1 U of exonuclease | and 0.5 U FastAP alka- line phosphatase (Thermo Scientific, St. Leon-Rot, Germany) and incubated at 37 °C for 1 h, followed by inactivation at 80 °C for 15 min. Standard Sanger se- quencing was performed in both directions by Macrogen with PCR primers, ex- cept for atp6, for which universal primers M13F-pUC(-40) and M13F(-20) were used. For tef1, additional sequencing was performed with two internal primers, EF1-1577F and EF1-1567R (Rehner and Buckley 2005). Alignment and phylogeny inference The two reads of newly generated sequences were assembled in GENEIOUS Pro v. 6.0.6 (Biomatters) and blasted against GenBank database to check that they were not from unrelated contamination. For the Boletaceae-wide tree, the introns in rpb2 and tefl were removed based on the amino acid sequence of Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 132 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species previously published sequences. The sequence datasets including the new- ly generated sequences and selected sequences representative of the whole family downloaded from GenBank, were separately aligned for each gene us- ing MAFFT on the server accessed at http://mafft.cbrc.jp/alignment/server/ (Katoh and Standley 2013). Before combining the four gene partitions (atp6, cox3, rpb2 exons + tef1 exons), topological incongruence between the data- sets was assessed using maximum likelihood (ML) on each of mitochondri- al genes (atp6 + cox3) dataset and nuclear genes (rpb2 exons + tefl exons) dataset. Paired trees were examined for conflicts involving only nodes with ML bootstrap (BS) = 70%. After that, the Maximum likelihood phylogenetic in- ference was performed using RAxML (Stamatakis 2006) on the CIPRES web portal (RAXxML-HPC2 on XSEDE; Miller et al. 2009). The phylogenetic tree was inferred by a single partitioned analysis with four character sets (one for each gene), using the GTRCAT model with 25 categories. The outgroup consisted of two Buchwaldoboletus and seven Chalciporus species from subfamily Chalci- poroideae, based on previously published phylogenies. Statistical support of clades was obtained with 1,000 rapid bootstrap replicates. For Bayesian In- ference (BI), the best-fit model of substitution among those implementable in MrBayes was estimated separately for each region using jModel-test (Darriba et al. 2012) on the CIPRES portal, based on the Bayesian Information Criterion (BIC). The selected models were HKY+I+G for atp6, GTR+I+G for cox3, K80+I+G for rpbb2 exons, and SYM+I+G for tef1 exons. Partitioned Bayesian analysis was performed on the CIPRES web portal (MrBayes on XSEDE; Ronquist et al. 2012). Two runs of five chains were run for 15,000,000 generations and sam- pled every 1,000 generations. At the end of the run, the average deviation of split frequencies was 0.008563. The PSRF values were equal or greater than 1, and ESS values were greater than 200 for all parameters. A total of 11,252 trees were used to construct a 50% majority rule consensus tree and calculate the Bayesian posterior probabilities (BPPs). A second, Xerocomoideae-wide tree, was also inferred from sequences of selected taxa in Xerocomoideae. Sequences were also separately aligned for each of the genes using the MAFFT online software, with introns included. Then, the topological incongruence between the datasets was also assessed using ML on each gene of five character sets, atp6, cox3, rpb2 exons, tefl exons, and the three introns of tef1 + an intron of rpb2. Since there was no supported conflict, the ML phylogenetic tree was inferred by a single partitioned analysis with the five character sets (atp6, cox3, rpb2 exons, tef1 exons, and rpb2 intron + tefl introns), using the same software and model that was used for family Bo- letaceae-wide phylogeny. Based on the latter, three Hourangia, three Phyllopo- rus, and three Xerocomus species in the same subfamily Xerocomoideae were used as the outgroup. For BI, partitioned Bayesian analysis was performed with MrBayes 3.2.6 software for Windows. The selected models were GTR+I+G for atp6 and cox3, K80+I+G for rpb2 exons, and SYM+I+G for tef1 exons, HKY+I+G intron of rpb2 + introns of tefl. Two runs of five chains were sampled every 200 generations and stopped after 700,000 generations. At the end of the run, the average deviation of split frequencies was 0.007178. The PSRF values were equal or greater than 1, and ESS values were greater than 200 for all parame- ters. A total of 2,495 trees were used to construct a 50% majority rule consen- sus tree and calculate the BPPs. MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 133 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Results Phylogenetic analyses A total of 39 sequences were newly generated in this study and deposited in GenBank. The ML phylograms from the mitochondrial and nuclear datasets were similar in topology without any supported conflict. The Boletaceae-wide, two-ge- nome alignment contained 743 sequences comprising four genes (146 for atp6, 110 for cox3, 231 for rpb2, 256 for tef1) from 262 voucher specimens (Table 1) corresponding to 254 species, and was 2946 characters long (DOI: 10.6084/ m9.figshare.23301077). ML and BI trees of the concatenated four-character set showed similar topologies without any supported conflicts (Bootstrap Support values, BS = 70% and posterior probabilities, PP = 0.90; Fig. 1). In the four-gene ML phylogram, the six subfamily clades were retrieved, namely the Austrobole- toideae G. Wu & Zhu L. Yang, Boletoideae Singer, Chalciporoideae G. Wu & Zhu L. Yang, Leccinoideae G. Wu & Zhu L. Yang, Xerocomoideae, and Zangioideae G. Wu, Yan C. Li & Zhu L. Yang. The Pulveroboletus group introduced by Wu et al. (2014, 2016) was not monophyletic; however, the monophyly of each genus in this group was highly supported. All the Xerocomus (Rostrupomyces) sisongkh- ramensis collections included formed a highly supported (BS = 100%, PP = 1) monophyletic group, sister to Rubinosporus (BS = 99%, PP = 1) clustered in sub- family Xerocomoideae with high support (BS = 99%, PP = 1). The other selected Xerocomus species, including the type species X. subtomentosus (voucher VDKO 0987), formed another, distinct monophyletic group (BS = 89%, PP = 1), sister to Phylloporus (BS = 79%, PP = 1). The two genera also clustered in a supported clade together with Hourangia (BS = 100%, PP = 1). Regarding Hemileccinum, all selected species formed a highly supported clade (BS = 100%, PP = 1) consisting of fourteen species-level clades, including twelve known species, one new spe- cies from Thailand (this study), and one undescribed species from China. The new species Hemileccinum inferius clustered in a supported clade (BS = 76%, PP = 0.98) together with the American H. hortonii, the Chinese H. rugosum, and an undescribed Hemileccinum species from China (voucher HKAS53421). Table 1. List of collections used for DNA analyses, with origin, GenBank accession numbers, and reference(s). Species Afroboletus aff. multijugus Afroboletus costatisporus Afroboletus luteolus Amoenoboletus granulopunctatus Amoenoboletus granulopunctatus Amylotrama banrockensis Amylotrama clelandii Anthracoporus cystidiatus Anthracoporus holophaeus Anthracoporus nigropurpureus Origin atp6 cox3 rpb2 tef1 Reference(s) Burundi MH614651 | MH614794 | MH614747 | MH614700 Vadthanarat et al. (2019b) Togo KT823958 | MH614795* | KT823991 KT824024 Raspé et al. (2016); Vadthanarat et al. (2019b)* Togo MH614652 | MH614796 | MH614748 | MH614701 Vadthanarat et al. (2019b) HKAS 86007 China - ~ MW560079 | MZ741478 Wu et al. (2021) HKAS 80250 China - - MW560080 | MW566746 Wu et al. (2021) AD-C58672 Australia - - - MN413637 Lebel et al. (2022) MEL2432546 Australia - - - MN413630 Lebel et al. (2022) HKAS55375 China - - MT110410 | KT990816* | Liand Yang (2021); Wu et al. (2016)* HKAS59407 China - - KT990506 | KT990888 Wu et al. (2016) HKAS52685 China - ~ KT990459 | KT990821 Wuet al. (2016) Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 134 Santhiti Vadthanarat et al.: Anew genus, Rostrupomyces and a new Hemileccinum species Species Aureoboletus auriflammeus Aureoboletus catenarius Aureoboletus duplicatoporus Aureoboletus formosus Aureoboletus gentilis Aureoboletus glutinosus Aureoboletus innixus Aureoboletus moravicus Aureoboletus nephrosporus Aureoboletus pseudoauriporus Aureoboletus raphanaceus Aureoboletus singeri Aureoboletus tenuis Aureoboletus thibetanus Aureoboletus tomentosus Aureoboletus viscidipes Aureoboletus viscosus Australopilus palumanus Austroboletus cf. dictyotus Austroboletus cf. subvirens Austroboletus olivaceoglutinosus Baorangia major Baorangia pseudocalopus Baorangia rufomaculata Binderoboletus segoi Boletellus aff. ananas Boletellus aff. emodensis Boletellus ananas Boletellus areolatus Boletellus aurocontextus Boletellus emodensis Boletus aereus Boletus albobrunnescens Boletus botryoides Boletus edulis Boletus rubriceps Borofutus dhakanus Buchwaldoboletus lignicola Buchwaldoboletus lignicola Voucher CFMR:BOS-699 HKAS54467 HKAS50498 GDGM44441 ADK4865 GDGM44477 CFMR:BOS-544 VDKO1120 HKAS74929 JAB 80 GDGM 53127 CFMR:BOS-468 GDGM42601 AFTOL-ID-450 HKAS90216 HKAS77103 ORO361 REH-9433 ORO045 ORO573 HKAS57756 ORO209 HKAS63607 BOTH4144 TWH8035 NY815459 ORO061 K(M)123769 TNS-F-61444 or BLT-7 TNS-F-61501 or BLT-65 TNS-F-61564 or BLT- 128 VDKO1055 ORO131 HKAS53403 VDKO0869 MICH:KUO-08150719 ORO345 HKAS76674 VDKO1140 Origin USA China China China Belgium China USA Belgium China USA China Belize China China China China Thailand Australia Thailand Thailand China Thailand China USA Guyana Costa Rica Thailand Belize Japan Japan Japan Belgium Thailand China Belgium USA Thailand China Belgium atp6 KT823961 MG212528 DQ534600* MH614655 KT823966 MH614656 MG897421 MG897415 OP358290 KT823970 MH614658 MG212530 KT823973 MG212531 MH614660 MH614661 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 MH614797* MH614798* MH614801 MH614802* MH614803 MK372295* MH614805* OP358307 MH614806* MH614807 AB989025 AB989037 AB989053 MH614809* MH614810* MH614811* MH614814 MH614815 rpb2 MK766269 | KT990349 KF112754 KT291751 KT823994 MH700229 MK766270 MG212615 KT990358 MW737471 MN549706 MK766274 KT291754 DQ366279 KT990355 KT990360 MH614751 MK766276 KT823999 MH614752 KF112764 MG897441 KF112677 MG897435 KF112760 KT824003 MH614754 AB999754 AB999770 AB999782 MG212617 KT824006 | KT990375 MG212618 MK766284 | MH614755 KF112819 MH614756 tef1 MK721060 KT990711 KF112230 KT291744 KT824027 MH700205 MK721061 MG212573 KT990721 MW737490 MN549676 MK721065 KT291745 DQ029199 KT990717 KT990723 MH614704 MK721067 KT824032 MH614705 KF112212 MG897431 KF112167 MG897425 KF112308 KT824036 MH614707 MG212575 KT824039 KT990738 MG212576 MK721076 MH614709 KF112277 MH614710 Reference(s) Kuo and Ortiz-Santana (2020) Wu et al. (2016) Wu et al. (2014) Zhang et al. (2015) Raspé et al. (2016); Vadthanarat et al. (2019b)* Zhang et al. (2019) Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2016) Farid et al. (2021) Zhang et al. (2019) Kuo and Ortiz-Santana (2020) Zhang et al. (2015) Binder and Hibbett (2006)*; Unpublished Wu et al. (2016) Wu et al. (2016) Vadthanarat et al. (2019b) Kuo and Ortiz-Santana (2020) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Wu et al. (2014) Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Wu et al. (2014) Phookamsak et al. 2019; Vadthanarat et al. (2019b)* This study Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Sata and Hattori (2015) Sata and Hattori (2015) Sata and Hattori (2015) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2016) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2019b) Wu et al. (2014) Vadthanarat et al. (2019b) 135 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Species Butyriboletus appendiculatus Butyriboletus cf. roseoflavus Butyriboletus pseudoregius Butyriboletus roseopurpureus Butyriboletus subsplendidus Butyriboletus yicibus Cacaoporus pallidicarneus Cacaoporus tenebrosus Caloboletus calopus Caloboletus firmus Caloboletus inedulis Caloboletus radicans Caloboletus yunnanensis Chalciporus aff. piperatus Chalciporus aff. rubinus Chalciporus africanus Chalciporus piperatus Chalciporus rubinus Chalciporus sp. Chalciporus sp. Chamonixia brevicolumna Chamonixia caespitosa Chiua virens Chiua viridula Crocinoboletus cf. laetissimus Crocinoboletus rufoaureus Cupreoboletus poikilochromus Cyanoboletus brunneoruber Cyanoboletus pulverulentus Cyanoboletus sinopulverulentus Erythrophylloporus aurantiacus Erythrophylloporus fagicola Erythrophylloporus paucicarpus Erythrophylloporus suthepensis Fistulinella prunicolor Harrya chromapes Harrya moniliformis Heimioporus conicus Voucher VDKO0193b ORO230 VDKO0925 BOTH4497 HKAS50444 HKAS55413 $V0221 $V0223 ADK4087 BOS-372 BOTH3963 VDKO1187 HKAS69214 ORO586 ORO139 JD517 VDKO1063 AF2835 ORO363 ORO373 DBG_F28707 0SC117571 ORO266 HKAS74928 ORO576 HKAS53424 GS10070 ORO233 RW109 HKAS59609 REH7271 Garay215 OR1151 SV0236 REH9880 HKAS50527 HKAS49627 HKAS53451 Origin Belgium China Belgium USA China China Thailand Thailand Belgium Belize USA Belgium China Thailand China Cameroon Belgium Belgium Thailand Thailand USA USA China China Thailand China Italy China Belgium China Costa Rica Mexico Thailand Thailand Australia China China China atp6 MG212537 KT823974 MG212538 MG897418 MK372262 MK372266 MG212539 MG897414 MG212540 KT823976 MH614663 KT823963 MH614664 KT823962 MH645586 MH645587 MG212541 KT823975 MG212542 KT823980 MH614666 MH614667 MH614670 MH614672 MH614676 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 MH614816* MH614819* MH614817* MH614818* MK372299 MK372303 MH614820 MH614821* MH614822* MH614824* MH614825* MH614826 MH645607 MH645608 MH614828* MH614833* MH614834* MH614835* MH614829 MH614830 MH614831 MH614832 MH614840 rpb2 MG212624 KT824007 MG212625 MG897438 KT990379 KF112674 MK372286 MK372290 KP055030 MK766288 MG897434 MG212626 KT990396 KT824009 MH614758 KT823996 MH614759 KT823995 MH645602 MH645603 MK766291 MK766293 MG212627 KF112794 KT824008 KF112710 KT157068 MG212628 KT824013 KF112700 MH614761 MH614762 MH614765 MH614767 MH614771 KF112792 KT990500 KF112805 tef1 MG212582 KT824040 MG212583 MG897428 KT990742 KF112157 MK372273 MK372277 KJ184566 MK721080 MG897424 MG212584 KJ184568 KT824042 MH614712 KT824029 MH614713 KT824028 MH645594 MH645595 MK721083 MK721085 MG212585 KF112273 KT824041 KF112206 KT157072 MG212586 KT824046 KF112193 MH614715 MH614716 MH614719 MH614721 MH614725 KF112270 KT990881 KF112226 Reference(s) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Wu et al. (2016) Wu et al. (2014) Vadthanarat et al. (2019b) Vadthanarat et al. (2019b) Vadthanarat et al. (2018); Zhao et al. (2014a); Zhao et al. (2014b); Vadthanarat et al. (2019b) Kuo and Ortiz-Santana (2020) Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Zhao et al. (2014a); Wu et al. (2016) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Raspé et al. (2016) Vadthanarat et al. (2019b) Vadthanarat et al. (2019b) Kuo and Ortiz-Santana (2020) Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2014) Gelardi et al. (2015) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2014) Vadthanarat et al. (2019a) Vadthanarat et al. (2019a) Vadthanarat et al. (2019a) Vadthanarat et al. (2019a) Vadthanarat et al. (2019b) Wu et al. (2014) Wu et al. (2016) Wu et al. (2016) 136 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Species Heimioporus australis Heimioporus cooloolae Heimioporus fruticicola Heimioporus gaojiaocong Heimioporus ivoryi Heimioporus japonicus Heimioporus japonicus Heimioporus mandarinus Heimioporus subcostatus Hemileccinum albidum Hemileccinum inferius Hemileccinum inferius Hemileccinum brevisporum Hemileccinum brevisporum Hemileccinum depilatum Hemileccinum ferrugineipes Hemileccinum floridanum Hemileccinum hortonii Hemileccinum impolitum Hemileccinum indecorum Hemileccinum parvum Hemileccinum rubropunctum Hemileccinum rugosum Hemileccinum sp. Hemileccinum subglabripes Hortiboletus amygdalinus Hortiboletus campestris Hortiboletus rubellus Hortiboletus subpaludosus Hourangia cf. pumila Hourangia cheoi Hourangia microcarpa Hourangia nigropunctata Hymenoboletus luteopurpureus Imleria badia Imleria obscurebrunnea Imleria pallidus Indoporus squamulosus lonosporus longipes Kaziboletus rufescens Voucher REH9288 REH9817 REH8962 HKAS80582 REH8620 ORO114 SV0016 ORO218 $V0235 KUN-HKAS81 120 BR0260 SV0282 KUN-HKAS89150 HKAS59445 AF2845 KUN-HKAS1 15554 AB16 MICH:KUO-07050706 ADK4078 ORO863 KUN-HKAS1 15553 REH-8501 HKAS84355 HKAS53421 MICH:KU0-07230802 HKAS54166 MICH:KU0-08240502 VDKO0403 HKAS59608 ORO762 HKAS52269 HKAS53378 HKAS 57427 HKAS46334 VDKO0709 ORO263 BOTH4356 HKAS107153 LEE1180 HKAS74706 Origin Australia Australia Australia China | Costa Rica Thailand Thailand Thailand Thailand China Thailand Thailand China China Belgium China USA USA Belgium Thailand China USA China China USA China USA Belgium China Thailand China China China China Belgium China USA China Malaysia Bangladesh atp6 KT823971 MT136776 MG212546 MT136780 OP358291 OP358292 MG212547 MG212548 MH614677 MH614679 MH614680 KT823983 MH614681 MH614659 MT085461 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 MH614843* MH614844* MH614845 MH614847 MH614848 MH614849* MH614850 MH614812 KT990409 KT824004 MT136766 MG212632 MT136770 MZ936320 OP358312 MZ936328 KT990414 MG212633 | MZ936330 MK766377 MG212634 MH614772 MZ936333 MK766327 KT990413 KF112751 MK766300 KT990416 MK766302 MH614774 KF112696 MH614775 | KF112773 KF112775 KP136978 KF112795 KT824016 MH614776 MT110409 MH712031* JQ928600 tef1 | KP327703 KP327710 KP327696 KT990770 KP327683 KT824037 MT136771 MG212590 MT136775 MZ936352 OP358319 MZ936362 KT990775 MG212591 MZ973011 MW737481 MK721175 MG212592 MH614726 MZ973010 MK721122 KT990774 | KF112235 MK721092 KT990777 MK721094 KF112185 MH614728 KF112286 KF112300 KP136927 KF112271 KT824049 MH614729 MH614708 MT110335 MT085471 JQ928578 Reference(s) Halling et al. (2015) Halling et al. (2015) Halling et al. (2015) Wu et al. (2016) Halling et al. (2015) Raspé et al. (2016) Vadthanarat et al. (2020) Vadthanarat et al. (2018) Vadthanarat et al. (2020) Li et. al. (2021) This study This study Li et. al. (2021) Wu et al. (2016) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Li et. al. (2021) Farid et al. (2021) Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Li et. al. (2021) Kuo and Ortiz-Santana (2020) Wu et al. (2016) Wu et al. (2014) Kuo and Ortiz-Santana (2020) Wu et al. (2016) Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2019b) Wu et al. (2014) Vadthanarat et al. (2019b) Zhu et al. (2015) Wu et al. (2014) Zhu et al. (2015) Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Vadthanarat et al. (2019b) Li and Yang (2021) Chuankid et al. (2021); Khmelnitsky et al. (2019) Hosen et al. (2021) 137 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Species Lanmaoa angustispora Lanmaoa asiatica Lanmaoa carminipes Lanmaoa pallidorosea Lanmaoa sublurida Leccinellum aff. crocipodium Leccinellum aff. griseum Leccinellum cremeum Leccinum scabrum Leccinum schistophilum Leccinum variicolor Leccinum versipelle Leccinum vulpinum Mucilopilus castaneiceps Mucilopilus paracastaneiceps Mucilopilus ruber Mycoamaranthus cambodgensis Neoboletus brunneissimus Neoboletus ferrugineus Neoboletus flavidus Neoboletus hainanensis Neoboletus junquilleus Neoboletus magnificus Neoboletus obscureumbrinus Neoboletus tomentulosus Neoboletus erythropus Octaviania asterosperma Octaviania cyanescens Octaviania tasmanica Octaviania zelleri Parvixerocomus pseudoaokii Paxilloboletus latisporus Paxilloboletus africanus Phylloporus bellus Phylloporus brunneiceps Phylloporus castanopsidis Phylloporus maculatus Voucher HKAS74752 ORO228 BOTH4591 BOTH4432 Farid 1023 HKAS76658 KPM-NC-0017832 HKAS90639 VDKO0938 VDKO1128 VDKO0844 KPM-NC-0017833 KPM-NC-0017834 HKAS75045 HKAS50338 HKAS84555 SV0197 ORO249 HKAS77718 HKAS59443 HKAS59469 AF2922 HKAS74939 ORO553 HKAS53369 VDKO0690 AQUI3899 PNW-FUNGI-5603 MEL2128484 MES270 ORO155 ADK5072 SABO0716 ORO473 OROO50 ORO052 ORO285 Origin China China USA USA USA China Japan China Belgium Belgium Belgium Scotland Scotland China China China Thailand China China China China France China Thailand China Belgium Italy USA Australia USA China Congo Guinea China Thailand Thailand China atp6 MH614682 MG897419 MG897417 KC552164 MG212549 KT823989 MG212550 KC552172 KC552171 MZ355900 MG212551 MG212552 MK372271 KT823982 KC552159 KC552160 KC552157 KC552161 MG212553 MH580778 KT823968 KT823969 MH580780 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 MH614851 MH614852* MH614853* MH614858* MH614859* MH614860* MZ355909 MH614861* MH614862* MH614864* MH614865 MH614866* MH614867* MH614868* rpb2 KM605177 | MH614777 MG897439 MG897437 | MW737460 KF112728 KT990420 MG212635 KT824022 MG212636 KF112735 KT990391 MT110436 MG212637 KT990431 KU974144 KF112669 MG212638 KF112653 MK372294 KF112659 KT824015 MG212597 MZ707870 MZ707869 MH580818 KT824001 KT824002 MH580820 tef1 KM605154 MH614730 MG897429 MG897427 MW737485 KF112252 JN378450* KT990781 MG212593 KT824055 MG212594 JN378454 JN378456 KF112211 KT990755 MT110364 MG212595 KT990789 KU974136 KF112175 MG212596 KF112148 MK372282 KF112154 KT824048 KC552093 JN378438 JN378437 JN378440 MG212597 MZ707866 MZ707865 MH580798 KT824034 KT824035 MH580800 Reference(s) Wu et al. (2015) Vadthanarat et al. (2019b) Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Farid et al. (2021) Wu et al. (2014) Unpublished; Orihara et al. (2012)* Wu et al. (2016) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Orihara et al. (2016); Orihara et al. (2012) Orihara et al. (2016); Orihara et al. (2012) Wu et al. (2014) Wu et al. (2016) Li and Yang (2021) Vadthanarat et al. (2022) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2016) Wu et al. (2016) Wu et al. (2014) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2014) Vadthanarat et al. (2019b) Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Orihara et al. (2016) Orihara et al. (2016); Orihara et al. (2012) Orihara et al. (2016); Orihara et al. (2012) Orihara et al. (2016); Orihara et al. (2012) Vadthanarat et al. (2019b) Badou et al. (2022) Badou et al. (2022) Chuankid et al. (2019); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Chuankid et al. (2019) 138 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Species Phylloporus pachycystidiatus Phylloporus pelletieri Phylloporus pusillus Phylloporus rhodoxanthus Phylloporus rubeolus Phylloporus rubiginosus Phylloporus rubrosquamosus Phylloporus scabripes Phylloporus subbacillisporus Phylloporus subrubeolus Phylloporus yunnanensis Porphyrellus castaneus Porphyrellus porphyrosporus Pseudoaustroboletus valens Pulchroboletus sclerotiorum Pulchroboletus sclerotiorum Pulveroboletus aff. ravenelii Pulveroboletus aff. ravenelii Pulveroboletus brunneopunctatus Pulveroboletus fragrans Pulveroboletus ravenelii Retiboletus aff. nigerrimus Retiboletus brevibasidiatus Retiboletus brunneolus Retiboletus fuscus Retiboletus griseus Retiboletus kauffmanii Retiboletus nigerrimus Rhodactina himalayensis Rhodactina rostratispora Rossbeevera cryptocyanea Rossbeevera eucyanea Rossbeevera griseovelutina Rossbeevera pachydermis Rossbeevera vittatispora Voucher HKAS53422 WU18746 OR1158 WU17978 ORO251 ORO169 HKAS52552 CFMR:BOS-621 ORO0436 BC022 ORO448 ORO241 MB97 023 HKAS82644 FLAS F 60333 FLAS F 60334 ADK4360 ADK4650 HKAS55369 ORO673 REH2565 ORO049 ORO570 HKAS52680 ORO231 MBO3 079 ORO278 HKAS53418 CMU25117 $V0170 KPM-NC17843 TNS-F-36986 TNS-F-36989 KPM-NC23336 TO-AUS-72 Origin China Austria Thailand Austria China China China Belize China Thailand China China Germany China USA USA Togo Togo China Thailand USA Thailand Thailand China China USA China China Thailand Thailand Japan Japan Japan New Zealand Australia atp6 MH580781 MH580783 MH580785 MH580786 MH580788 MH580792 MH580793 MG212554 MG212555 DQ534609 KT823957 KT823959 KT823977 KU665635 KT823967 MT085469 MG212556 KT823964 MG212557 MG212558 MG212560 KT581441 KC552115 KC552124 KJ001064 KC552108 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 MH614869* MH614870* MH614871* MH614872* MH614873* MH614875* MH614876* MH614877* MH614878* MH614882* MH614883* MH614884* MH614885* MH614886* MH614887* MH614888* MH614889* rpb2 KF112777 MH580821 MH580823 MH580824 MH580825 MH580827 KF112780 MK766359 MH580831 MH580832 MG212640 MG212641 GU187800 MT110431 MF614169 MF614164 KT823990 KT823992 | KT990455 KT824010 KU665637 KT824000 MT085479 KF112690 MG212642 KT823997 MG212643 KT990462 MG212645 tef1 KF112288 MH580801 MH580803 MH580805 MH580806 MH580808 KF112289 MK721156 MH580812 MH580813 MG212598 | MG212599 GU187734 MT110359 MF614167 MF614165 KT824023 KT824025 KT990814 KT824043 KU665636 KT824033 MT085476 KF112179 MG212600 KT824030 MG212601 KT990824 MG212602, MG212603 MG212605 KC552072 KC552068 KC552076 KP222912 KC552065 Reference(s) Wu et al. (2014) Chuankid et al. (2019); Vadthanarat et al. (2019b)* Chuankid et al. (2019); Vadthanarat et al. (2019b)* Chuankid et al. (2019); Vadthanarat et al. (2019b)* Chuankid et al. (2019); Vadthanarat et al. (2019b)* Chuankid et al. (2019); Vadthanarat et al. (2019b)* Wu et al. (2014) Kuo and Ortiz-Santana (2020) Chuankid et al. (2019); Vadthanarat et al. (2019b)* Chuankid et al. (2019); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Binder and Hibbett (2006); Binder et al. (2010) Li and Yang (2021) Crous et al. (2019) Crous et al. (2019) Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2016) Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Chuankid et al. (2021) Wu et al. (2014) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2016) Vadthanarat et al. (2018) Vadthanarat et al. (2018) Orihara et al. (2016) Orihara et al. (2016) Orihara et al. (2016) Orihara et al. (2016) Orihara et al. (2016) 139 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Species Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Rostrupomyces sisongkhramensis Royoungia rubina Rubinosporus auriporus Rubinosporus auriporus Rubroboletus legaliae Rubroboletus rhodosanguineus Rubroboletus rhodoxanthus Rubroboletus satanas Rugiboletus andinus Rugiboletus brunneiporus Rugiboletus extremiorientalis Singerocomus inundabilis Singerocomus rubriflavus Spongiforma thailandica Spongispora temasekensis Spongispora temasekensis Strobilomyces atrosquamosus Strobilomyces echinocephalus Strobilomyces floccopus Strobilomyces mirandus Strobilomyces verruculosus Suillellus luridus Suillellus queletii Voucher BRO311 BR0313 BR0368 BRO371 ORO915 ORO918 ORO919 OR1004 OR1059 OR1392 OR1399 SV0155 SV0219 SV0225 HKAS53379 S$V0101 SV0090 VDKO00936 BOTH4263 HKAS84879 VDKO0968 REH-7705 HKAS83209 ORO406 TWH9199 TWH9585 DED7873 SING 0206334 ACMF5 HKAS55368 ORO243 RW103 ORO115 HKAS55389 VDKO0241b VDKO1185 Origin Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand Thailand China Thailand Thailand Belgium USA China Belgium Costa Rica China Thailand Guyana Guyana Thailand Singapore Singapore China China Belgium Thailand China Belgium Belgium atp6 OP358293 OP358294 OP358295 OP358296 OP358297 OP358298 OP358299 OP358300 OP358301 OP358302 OP358303 OP358304 OP358305 OP358306 MZ355897 MZ355896 KT823985 MG897416 KT823986 MG212562 MH645588 MH645589 MG212563 MZ803018 MG212564 KT823978 KT823972 KT823981 MH645590 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 OP358308 OP358309 OP358310 OP358311 MZ355906 MZ355905 MH614890* MH614891* MH614892* MH614893* MH645609 MH645610 MH614894** MH614895* MH614896* MH614901* MH645611 rpb2 OP358313 OP358314 OP358315 OP358316 OP358317 OP358318 KF112796 MZ355904 MZ355903 KT824018 MG897436 KT990468 KT824019 | MK766316 KM605168 MG212647 | LC043089* MG212648 | MG674378 MZ824748 KT990476 MG212649 KT824011 KT824005 KF112813 KT824014 MH645604 tef1 OP358320 OP358321 OP358322 OP358323 OP358324 OP358325 OP358326 KF112274 MZ355902 MZ355901 KT824051 MG897426 KT990831 KT824052 MK721111 KM605144 MG212607 MH645596 MH645597 KF030436* MG674377 MZ803023 KT990839 MG212608 KT824044 KT824038 KF112259 KT824047 MH645598 Reference(s) This study This study This study This study This study This study This study This study This study This study This study This study This study This study Wu et al. (2014) Vadthanarat et al. (2022) Vadthanarat et al. (2022) Raspé et al. (2016); Vadthanarat et al. (2019b)* Phookamsak et al. (2019); Vadthanarat et al. (2019b)* Wu et al. (2016) Raspé et al. (2016); Vadthanarat et al. (2019b)* Kuo and Ortiz-Santana (2020) Wu et al. (2015) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Henkel et al. (2016)*; Vadthanarat et al. (2019b) Vadthanarat et al. (2019b) Nuhn et al. (2013)*; Vadthanarat et al. (2018); Vadthanarat et al. (2019b)** Wu et al. (2018) Raghoonundon et al. (2021) Wu et al. (2016) Vadthanarat et al. (2018) Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) 140 Santhiti Vadthanarat et al.: Anew genus, Rostrupomyces and a new Hemileccinum species Species Suillellus subamygdalinus Sutorius australiensis Sutorius eximius Sutorius pachypus Sutorius pseudotylopilus Sutorius rubinus Sutorius ubonensis Tengioboletus glutinosus Tengioboletus reticulatus Turmalinea persicina Turmalinea yuwanensis Tylocinum griseolum Tylopilus atripurpureus Tylopilus felleus Tylopilus ferrugineus Tylopilus otsuensis Tylopilus vinaceipallidus Tylopilus violaceobrunneus Veloboletus limbatus Veloporphyrellus conicus Veloporphyrellus gracilioides Veloporphyrellus pseudovelatus Veloporphyrellus velatus Xanthoconium affine Xanthoconium purpureum Xanthoconium sinense Xerocomellus chrysenteron Xerocomellus cisalpinus Xerocomellus communis Xerocomellus ripariellus Xerocomus ferrugineus Xerocomus fulvipes Xerocomus magniporus Xerocomus rugosellus Xerocomus spadiceus var. gracilis Xerocomus subtomentosus Xerocomus tenax Zangia citrina Zangia olivaceobrunnea Zangia roseola Voucher HKAS57262 REH9441 REH9400 ORO411 ORO378B ORO379 SV0032 HKAS53425 HKAS53426 KPM-NC18001 KPM-NC18011 HKAS50281 HKAS50208 VDKO0992 BOTH3639 HKAS53401 ORO137 HKAS89443 REH9228 REH8510 HKAS53590 HKAS59444 HKAS63668 NY00815399 MICH:KUO-07061405 HKAS77651 VDKO00821 ADK4864 HKAS50467 VDKO0404 CFMR:BOS-545 HKAS76666 HKAS58000 HKAS58865 MICH:KUO-07080702 VDKO0987 MICH:KU0-08241 404 HKAS52684 HKAS52272 HKAS51137 Origin China Australia USA Thailand Thailand Thailand Thailand China China Japan Japan China China Belgium USA China China China Australia Belize China China China USA USA China Belgium Belgium China Belgium USA China China China USA Belgium USA China China China atp6 MG212567 MG212568 MN067465 MH614692 MH614693 MN067472 KC552130 KC552138 KT823987 MH614694 MG212571 MT747398 MH614698 JX984519 JX984523 KT823984 KT823960 MH614699 MG212572 HQ326850 HQ326857 HQ326858 MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 cox3 MK386576** MH614902** MH614903 MH614904 MH614906* MH614907 MH614912* MH614913 MH614914* MH614915* MH614916 MH614919* rpb2 KF112660 | MG212652 MG212653 MN067500 MH614787 MH614788 MN067507 KF112800 KF112828 KF112730 KF112799 KT824020 MH614789 KF112797 MG212656 KT990504 | MT747397 MH614792 KF112734 | KT990486 MK766372 KT990488 KT824017 | KT823993 KT990494 MH614793 MK766375 KF112789 KF112781 KF112784 MK766378 MG212657 | MK766379 tef1 KF112174 JQ327032* JQ327029* MNO067484 MH614740 MH614741 MN067491 KF112204 KF112313 KC552082 KC552089 KF112284 KF112283 KT824053 MH614742 KF112224 MG212613 KT990886 MN413636 MH614745 KF112210 JX984553 JX984554 KT990850 MK721170 KT990853 KT824050 KT824026 KT990858 MH614746 MK721173 KF112292 | KF112293 KF112294 MK721176 MG212614 MK721177 HQ326872 | HQ326876 | HQ326877 Reference(s) Wu et al. (2014) Halling et al. (2012); Vadthanarat et al. (2018); Vadthanarat et al. (2019b)** Halling et al. (2012); Vadthanarat et al. (2018); Vadthanarat et al. (2019b)** Vadthanarat et al. (2021) Vadthanarat et al. (2019b) Vadthanarat et al. (2019b) Vadthanarat et al. (2021) Wu et al. (2014) Wu et al. (2014) Orihara et al. (2016) Orihara et al. (2016) Wu et al. (2014) Wu et al. (2014) Raspé et al. (2016); Vadthanarat et al. (2019b)* Vadthanarat et al. (2019b) Wu et al. (2014) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Wu et al. (2016) Crous et al. (2019) Vadthanarat et al. (2019b) Wu et al. (2014) Li et al. (2014) Li et al. (2014) Wu et al. (2016) Kuo and Ortiz-Santana (2020) Wu et al. (2016) Raspé et al. (2016); Vadthanarat et al. (2019b)* Raspé et al. (2016); Vadthanarat et al. (2019b)* Wu et al. (2016) Vadthanarat et al. (2019b) Kuo and Ortiz-Santana (2020) Wu et al. (2014) Wu et al. (2014) Wu et al. (2014) Kuo and Ortiz-Santana (2020) Vadthanarat et al. (2018); Vadthanarat et al. (2019b)* Kuo and Ortiz-Santana (2020) Li et al. (2011) Li et al. (2011) Li et al. (2011) 141 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species For the subfamily Xerocomoideae-wide phylogeny, no supported topo- logical incongruence between the character sets was detected. Then, the Xerocomoideae-wide phylogeny was inferred based on the alignment containing 155 sequences of four genes (22 for atp6, 20 for cox3, 53 for rpb2, 60 for tef1) from 60 voucher specimens corresponding to 55 taxa, and was 3,161 charac- ters long (DOI: 10.6084/m9.figshare.23301077). The ML and BI tree topologies om Hemileccinum hortonii MICH KUO 07050706 92/.99 Hemileccinum rugosum HKAS84355 761.98 Hemileccinum sp. HKAS53421 Hemileccinum inferius SV0282, BRO260 10/1 Hemileccinum subglabripes MICH KUO 07230802 Hemileccinum ferrugineipes LIW5S84 roo. Hemileccinum parvum wu2299 Hemileccinum rubropunctum REH8501 3a/.95[~ Hemileccinum brevisporum HKAS59445 91/1 Hemileccinum brevisporum kuanzshao487 ADS 99/l Hemileccinum floridanum AB1I6 Hemileccinum albidum Qin682 lee: Hemileccinum impolitum ADK4078 100/1 Hemileccinum depilatum AF2845 Hemileccinum indecorum OR863 Rostrupomyces sisongkhramensis SV0155, SV0225, ORO919, BRO3U, BRO313, B Xerocomoideae Rostrupomyces sisongkhramensis SV0219 Rubinosporus auriporus re Amylotrama spp. -/.96 == ee Heimioporus spp. Veloboletus limbatus REH9228 98/1 = _ = eee Aureoboletus spp. 100/1 99/1 | Pulchroboletus sclerotiorum 761,99 7D - Xerocomus spp. 100/1 Phylloporus spp. Hourangia spp. 100/1 = eee Boletellus spp. “1.91 = = Zangioideae 194\| gan : Austroboletoideae rma t| aorangia spp. i hese Boletoideae z= Leccinoideae Neoboletus spp. Sutorius spp. a er Crocinoboletus spp. Caloboletus spp. 92/1 Rubroboletus spp. 100/1 86/1 Pulveroboletus spp. 100/1 Sul Lon | Suillellus spp. a 100/1 aie i Erythrophylloporus spp. (6. Rgibotetus spp. 10/1 Butyriboletus spp. { Amoenoboletus granulopunctatus Chalciporoideae 0.03 Figure 1. Boletaceae-wide Maximum Likelihood phylogenetic tree inferred from the four-gene dataset (atp6, cox3, rpb2, and tef1) (introns excluded), showing the position of the new genus Rostrupomyces in Xerocomoideae. Bootstrap sup- port values (BS = 70%) and the corresponding Bayesian posterior probabilities (PP = 0.90) are shown above the sup- ported branches. The two Buchwaldoboletus and seven Chalciporus species (subfamily Chalciporoideae) were used as outgroup. All taxa belonging to subfamilies Austroboletoideae, Boletoideae, Chalciporoideae, Leccinoideae, and Zangi- oideae were collapsed into subfamily clades. All generic clades in subfamily Xerocomoideae (excluding Hemileccinum and Rostrupomyces) and Pulveroboletus group with high supports, were also collapsed. Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 142 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species of the concatenated five-character-set alignment were similar without any sup- ported conflict (Fig. 2). The Xerocomoideae-wide ML tree also showed a similar topology to the Boletaceae-wide tree. However, in this subfamily Xerocomoide- ae-wide tree, the support of the clade consisting of the new species Hemilec- cinum inferius, H. hortonii, H. rugosum, and an undescribed Hemileccinum spe- cies, was lower (BS = 53%, PP = 0.71) than in the Boletaceae-wide ML tree. 99/1 Hemileccinum hortonii MICH KUO 07050706 200d Hemileccinum rugosum HKAS84355 Hemileccinum sp. HKAS53421 Hemileccinum inferius SV0282, BR0260 99/1 Hemileccinum rubropunctum REH8501 Hemileccinum Hemileccinum parvum wu2299 100/1 Hemileccinum subglabripes MICH KUO 07230802 Hemileccinum ferrugineipes LJW584 941 - Hemileccinum brevisporum HKAS59445 Hemileccinum brevisporum kuanzhao487 Hemileccinum floridanum AB16 Hemileccinum albidum Qin682 100/1 Hemileccinum impolitum ADK4078 Hemileccinum depilatum AF2845 Hemileccinum indecorum ORO 863 100/1 100/1 100/1 10/1 Rostrupomyces sisongkhramensis svo155, 5V0225, OR0919, BRO311, BR0313,. 100/1 Rostrupomyces sisongkhramensis svo219 Rost rupomyces 100/1 Rubinosporus auriporus SV0090 . Rubinosporus auriporus SVOIO1 | Rub tnmosporus 100/1 Amylotrama banrockensis AD58672 Amylotrama clelandii MEL2432546 | Amy lotrama 99/.97 Heimioporus australis REH9288 95/1 Heimioporus fruticicola REH8962 99/1 Heimioporus cooloolae REH9817 99/1 Heimioporus mandarinus OR0218 74/.98 Heimioporus conicus HKAS53451 oS a 761.90 1001 ~ Heimioporus japonicus OROII4 Heimiop orus Ani [| Heimioporus japonicus SVO016 Heimioporus ivoryi REH&620 Heimioporus gaojiaocong HKAS80582 Heimioporus subcostatus SV0235 Veloboletus limbatus REH9228 100/1 Aureoboletus glitinosus GDGM44477 781- Aureoboletus tenuis GDGM42601 — sa Aureoboletus thibetanus AFTOL ID 450 97f Aureoboletus viscidipes HKAS77103 100/1 Aureoboletus viscosus ORO361 ji 78/92 Aureoboletus singeri CFMR BZ 2395 82/.98 Hl 100/1 Aureoboletus gentilis ADK4865 95/1 Veloboletus Aureoboletus pseudoauriporus JAB80 Aureoboletus duplicatoporus HKAS50498 Aureoboletus formosus GDGM44441 100/1 Aureoboletus catenarius HKAS54467 10/1 a. Aureoboletus moravicus VDKO1120 Aureoboletus nephrosporus HKAS74929 eait Aureoboletus innixus CFMR BOS 544 Aureoboletus raphanaceus GDGM53127 100/1 Aureoboletus auriflammeus CFMR BOS 699 Aureoboletus tomentosus HKAS90216 100/1 Pulchroboletus sclerotiorum FLAS F 60333 Pulchroboletus sclerotiorum FLAS F 60334 | Pulchroboletus 75/- Xerocomus rugosellus HKASS8865 loo Xerocomus fulvipes HKAS76666 oat Xerocomus subtomentosus VDKO0987 Phylloporus subrubeolus BC022 [99/1 Phylioporus pelletieri WU18746 Phylloporus bellus OR0473 99/1 Hourangia nigropunctata HKAS57427 100/1 ! Hourangia cheoi HKAS52269 Hourangia cf. pumila ORO762 Aureoboletus 70/- Xerocomus 100/1 | Phylloporus Hourangia Figure 2. Xerocomoideae-wide phylogenetic tree inferred from the four-gene dataset (atp6, cox3, rpb2, and tef1) (introns included), including new genus Rostrupomyces and selected Xerocomoideae using Maximum Likelihood and Bayesian Inference methods (ML tree is presented). The three Hourangia, three Phylloporus, and three Xerocomus species in Xe- rocomoideae were used as outgroup. Bootstrap support values (BS = 70%) and posterior probabilities (PP = 0.90) are shown above the supported branches. MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 143 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Taxonomy Rostrupomyces Vadthanarat & Raspé, gen. nov. MycoBank No: 849050 Etymology. Named in honor of Frederik Georg Emil Rostrup (1831-1907), Dan- ish botanist, mycologist, and plant pathologist, celebrating the 120 years of his describing the first new species of Boletaceae from Thailand in 1902. Diagnosis. Differs from other genera in Boletaceae by the following combi- nation of characters: rugulose to subrugulose pileus surface, white pore when young becoming grayish yellow in age, subscabrous stipe surface with scat- tered granulose squamules, white basal mycelium, unchanging color in any parts, yellowish brown spore print, and broadly ellipsoid to ellipsoid, smooth basidiospores. Description. Basidiomata stipitate-pileate. Pileus convex then plano-convex to plane; surface at first rugulose then subrugulose in age, finely tomentose to tomentose, dark brown to reddish brown, becoming light brown to brown to grayish orange, unchanging when bruised; context off-white then yellowish to dull pale orange in age, unchanging when cut. Stipe central, terete, cylindrical; surface subscabrous, yellowish white to pale yellow to orange white, with scat- tered brown to dark brown to reddish brown granulose squamules, unchanging when bruised; basal mycelium white; context solid, white becoming off-white to yellowish white in age, unchanging when cut. Hymenophore tubulate, slightly depressed to depressed around the stipe. Tubes pale yellow then grayish yel- low, separable from the pileus context, unchanging when cut. Pores roundish then subangular to angular with age; when young white then yellowish white be- coming grayish yellow, unchanging when touched. Spore print yellowish brown. Basidiospores ellipsoid to broadly ellipsoid, thin-walled, smooth under light mi- croscope and SEM. Basidia 4-spored, clavate without basal clamp connection. Cheilo- and pleurocystidia narrowly fusiform to fusiform or narrowly utriform, thin-walled. Pileipellis an intricate trichoderm, made of moderately interwoven to loosely interwoven, thin-walled hyphae. Stipitipellis arranged parallel to the surface of the stipe, composed of moderately interwoven, thin-walled hyphae, with scattered groups of rising cells to clusters of narrowly clavate to clavate cells. Clamp connections not seen in any tissue. Typus generis. Rostrupomyces sisongkhramensis (Khamsuntorn, Pinruan & Luangsa-ard) Vadthanarat, Raghoonundon & Raspé. Distribution. Currently known only from northern and northeastern Thailand. Notes. Rostrupomyces can be morphologically separated from Xeroco- mus by the different shape and surface of basidiospores, which are ellipsoid to broadly ellipsoid with smooth under light microscope and SEM in the new genus, whereas Xerocomus produce more or less oblong to fusiform basidio- spores, usually with bacillate surface under SEM (Wu et. al. 2016). Rostrupomy- ces also produces yellowish brown spore print, whereas Xerocomus produces olive-brown spore print. Moreover, color change upon bruising does not occur in any part of Rostrupomyces basidiomes, whereas context and hymenophore of Xerocomus always turn more or less bluish to blue when bruised or cut (Wu et. al. 2016). The most resembling genus, Hemileccinum, shares some similar characters including rugulose to subrugulose pileus surface, yellow hymeno- Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 144 Santhiti Vadthanarat et al.: Anew genus, Rostrupomyces and a new Hemileccinum species phore which is depressed around the stipe apex, subscabrous stipe surface (less so in Hemileccinum), white basal mycelium, mostly unchanging color in any parts. However, Rostrupomyces can be morphologically distinguished from Hemileccinum by the differences in spore print color, and in the shape and sur- face of basidiospores. Rostrupomyces produces yellowish brown spore print, broadly ellipsoid to ellipsoid basidiospores with smooth surface under light mi- croscope and SEM. Hemileccinum produces olive-brown spore prints, boletoid basidiospores that are smooth under light microscope, but ornamented with irregular warts and pinholes under SEM. Also, the pore surface of Rostrupo- myces is white in young basidiomata and becomes pale yellow when mature whereas in Hemileccinum, the pore surface is yellow in all stages (Sutara 2008; Wu et al. 2016; Farid et al. 2021; Li et al. 2021). Rostrupomyces sisongkhramensis (Khamsuntorn, Pinruan & Luangsa-ard) Vadthanarat, Raghoonundon & Raspé, comb. nov. Figs 3, 4, 5A-B MycoBank No: 851393 Xerocomus sisongkhramensis Khamsuntorn, Pinruan & Luangsa-ard. Basionym. Diagnosis. Rostrupomyces sisongkhramensis is characterised by having dark to reddish brown, becoming brown to grayish orange pileus, with rugulose to subrugulose, finely tomentose to tomentose surface; yellowish to orange white, subscabrous, longitudinally fissurate stipe surface, with moderately scattered brown to dark brown to reddish brown granulose squamules; yellow hymeno- phore; unchanging color in any parts; yellowish brown spore print; and broadly ellipsoid to ellipsoid smooth basidiospores. Description. Basidiomata medium-sized. Pileus 37—94(118) mm in diame- ter, convex at first then plano-convex to plane, sometimes with sub-depressed at the centre; margin inflexed at first then deflexed in age, exact or slightly ex- ceeding (up to 1 mm); surface at first rugulose especially near the margin then subrugulose in age, dull, dry to moist, finely tomentose to tomentose covered with greenish yellow (3A3-—4, 3B4) matted hyphae at places (especially when young), at first dark brown to reddish brown (6-8F4-8), becoming light brown to brown to grayish orange (6D/E5-—6, 5B4—5) on light yellow to brownish or- ange (4A3-5, 5C4) background in age, gradually paler to the margin, unchang- ing when bruised; context (3)5-10(14) mm thick half-way to the margin, at first firm then soft in age, color distribution even, at first off-white, slightly brownish (7D/E4—5) near the pileipellis, then yellowish to orange white (4—5A2) or occa- sionally yellowish (3A3—4) above the hymenium especially in age, unchanging when cut. Stipe (33)41—97(108) x 6(7)—19(20) mm, central, terete, usually cy- lindrical for the most part but often with wider base, rarely club-shaped; sur- face subscabrous longitudinally fissurate, slightly shiny, yellowish white to pale yellow to orange white (3A3 to 4A2 to 5A2), occasionally pale yellow (3A3—4) near the cap, with moderately scattered brown to dark brown to reddish brown (7D/E/F4-7) granulose squamules, unchanging when bruised; basal mycelium little developed, white (1A1); context solid, firm, at first white (1A1) becoming off-white to yellowish white (4A2) occasionally pale yellow (3A3—4) especially Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 145 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species in the above part near the stipe surface in age, yellowish to orange gray (4- 5B2-3) virgate at places, unchanging when cut. Hymenophore tubulate, slightly depressed to depressed around the stipe, with slightly decurrent tooth, some- times almost free, mostly segmentiform to subventricose. Tubes (3)4-13 mm long half-way to the margin, at first pale yellow (4A3) then grayish yellow (4B3) ie om ul Figure 3. Fresh basidiomata of Rostrupomyces sisongkhramensis A OR0915 B ORO919 C OR1004 D SV0155, white pores surface in young basidioma (white arrow) E SV0219 F SV0225. Scale bars: 1 cm (A-F). Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 146 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species xe ee es | ? V4, yh Nae SAU AZ / & NRCS) 7 BT es ISK EAS A NN ary iN RES Be Oemaen ys ST ME Sy SEAS TRIES ] COE IESE 2 Figure 4. Microscopic features of Rostrupomyces sisongkhramensis A basidiospores B basidia C cheilocystidia D pleu- rocystidia E pileipellis F stipitipellis showing a cluster of narrowly clavate to clavate cells which slightly scattered on the stipe surface. Scale bars: 10 um (A-D); 25 um (D-E); 50 um (E-F). All line drawings were made from SV0155. MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species i | WD af Mag OV 5.00 kx 37.2um | 10.15mm |) Li @um 10.00 kx 18.6 ym Det Scan Mode Det SE RESOLUTION SE R Scan Mc ESOLUT a "a a e WD 9.93 mm RESOLUTION Figure 5. Scanning electron micrographs of basidiospores A-B Rostrupomyces sisongkhramensis (SV0155) C-D Hemi- leccinum inferius (SV0282). when mature, separable from the pileus context, unchanging when cut. Pores 0.2-0.8(1.3) mm wide half-way to the margin, irregularly arranged, roundish then subangular to angular in age; topography subregular, composite pores fre- quent; color distribution even, when young white (1A1) then yellowish white (4A2) becoming grayish yellow (4B3-5) infrequently with reddish brown spots (7-8E/F8) at places in age, unchanging when touched. Odour mild fungoid. Taste mild. Spore print yellowish brown (5F5) in mass. Macrochemical reactions: KOH, brownish orange on pileus, yellowish to pale dull orange on pileus context and stipe surface, none or yellowish on stipe con- text, yellowish brown to brownish orange on hymenium, NH,OH, yellowish to brownish orange (occasionally with purple aura) on pileus, yellowish to pale orange on stipe surface, yellowish to brownish on hymenium, none or yellowish on pileus context and stipe context. Spores [591/10/10] (6.3—)6.9-7.9-9.1(—9.8) x (4.5-)4.8-5.5-6.2(-6.5) um Q = (1.2-)1.29-1.44-1.63(-1.79). From the type (6.5—-)6.9-7.7—8.8(-9.5) x (4.7-)5-5.5-6.2(-6.5) um, Q = (1.2—)1.25-1.41-1.54(-1.63), N = 106, broad- MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 148 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species ly ellipsoid to ellipsoid, thin-walled, smooth under light microscope and SEM, yellowish hyaline in water or KOH, inamyloid. Basidia 4-spored, (22—)22-26- 31(-31) x (9-)9-11-13(-13) um, clavate without basal clamp connection, hy- aline to yellowish hyaline in KOH; sterigmata up to 4 um long. Cheilocystidia (30-)30-43-58(-59) x (9-)9-11-15(-15) um, frequent, narrowly fusiform to fusiform with obtuse apex or narrowly utriform, thin-walled, hyaline in KOH. Pleurocystidia (33-)33-43-63(-—63) x (8-)8-11-13(-13) um, infrequent, nar- rowly fusiform to fusiform with obtuse apex, thin-walled, hyaline in KOH. Hy- menophoral trama subregular to slightly divergent, 38-82 um wide, with sub- regular mediostratum 8-24 um wide, composed of cylindrical, 4-12 um wide hyphae, hyaline in KOH. Pileipellis an intricate trichoderm, 70-130 mm thick, made of moderately interwoven (when young) to loosely interwoven in age, thin-walled, smooth, hyaline hyphae 4-18 mm wide, branching and anastomos- ing at places; terminal cells 12-65 x 4-18 mm, narrowly fusiform to fusiform to broadly fusiform with slightly acuminate or obtuse apex, hyaline to yellowish pale brown in KOH. Pileus context made of strongly interwoven, thin-walled hyphae, up to 12 um wide, hyaline in KOH. Stipitipellis arranged parallel to the surface of the stipe, composed of moderately interwoven, cylindrical, thin- walled, 3-10 um wide hyphae, anastomosing and branching at places, sparsely scattered with groups of rising cells to clusters (up to 87 um high) of narrowly clavate to clavate cells (21-36 x 4—9 um), hyaline to yellowish hyaline in KOH. Caulocystidia not seen. Stipe context parallelly arranged, composed of mod- erately interwoven, cylindrical, thin-walled, 3-18 um wide hyphae, hyaline to yellowish hyaline in KOH. Clamp connections not seen in any tissue. Habitat and distribution. Solitary or in small groups (up to 4 basidiomata), or fasciculate by 2 to 3 basidiomata, on sandy loam to sandy clay loam soil in open dry dipterocarp forest and dipterocarp forest dominated by Dipterocarpa- ceae trees namely Anthoshorea roxburghii, Dipterocarpus obtusifolius, D. tuber- culatus, D. intricatus, Pentacme siamensis, and Shorea obtusa with or without scattered Fagaceae trees. Currently known from the type locality (Nakhon Pha- nom province), Sisaket and Ubon Ratchathani provinces in northeastern Thai- land, and also in Chiang Mai and Chiang Rai provinces in northern Thailand. Specimens examined. THAILAND, Chiang Mai Province, Muang District, Doi Suthep-Pui National Park, 18°47'39.4"N, 98°55'21.5"E, elev. 915 m, 20 July 2015, Olivier Raspé, OR1004 (CMUB, BKF, BR); ibid., 18°48'04.2"N, 98°55'44.3'E, elev. 775 m, 21 July 2015, Santhiti Vadthanarat, SV0155 (CMUB, BKF); Mae On District, 18°51'57.4"N, 99°17'22.9"E, elev. 660 m, 1 June 2015, Olivier Raspé, ORO915 (CMUB, BR); ibid., 18°51'57.0"N, 99°17'23.0"E, elev. 660 m, 1 June 2015, Olivier Raspé, ORO918 (CMUB, BR); ibid., 18°51'57.0"N, 99°17'23.0'E, elev. 660 m, 1 June 2015, Olivier Raspé, ORO919 (CMUB, BR); ibid., 18°52'13.0'N, 99°18'25.0"E, elev. 760 m, 15 August 2015, Santhiti Vadthanarat, SV0219 (CMUB, BR); ibid., 18°51'57.4"N, 99°17'22.0"E, elev. 700 m, 16 August 2015, Santhiti Vadthanarat, SV0225 (CMUB, BR); ibid., 18°51'57.7"N, 99°17'26.5'E, elev. 685 m, 1 June 2017, Santhiti Vadthanarat, SV0397 (CMUB, BR); ibid., 18°52'15.6'N, 99°18'11.5"E, elev. 800 m, 11 July 2017, Olivier Raspé, OR1392 (CMUB, BR); ibid., 18°52'15.6'N, 99°18'11.5"E, elev. 800 m, 11 July 2017, Olivier Raspé, OR1399 (CMUB, BR); ibid., 18°52'16.7"N, 99°18'13.0"E, elev. 800 m, 9 June 2021, Santhiti Vadthanarat, SV0512 (CMUB, BR); ibid. 18°52'7.9"N, 99°17'42.0'E, elev. 780 m, 10 June 2021, Santhiti Vadthanarat, SV0517 (CMUB, BR); ibid. 18°52'16.4'N, Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 149 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species 99°17'40.5"E, elev. 820 m, 10 June 2021, Santhiti Vadthanarat, SV0518 (CMUB, BR); ibid. 18°52'12.0"N, 99°17'31.2'E, elev. 700 m, 10 June 2021, Bhavesh Ra- ghoonundon, BRO311; ibid. 18°52'26.8"N, 99°18'15.5"E, elev. 845 m, 10 June 2021, Bhavesh Raghoonundon, BR0313; Chiang Rai Province, Phan District, 19°48'50.0"N, 99°51'57.0"E, elev. 730 m, 22 June 2021, Bhavesh Raghoonundon, BRO368; ibid. 19°48'50.0"N, 99°51'57.0"E, elev. 730 m, 22 June 2021, Bhavesh Raghoonundon, BRO371; Sisaket Province, Kanthararom District, Kok Yang Yai roadside market, 17 September 2016, Santhiti Vadthanarat, SV0345 (CMUB); Ubon Ratchathani Province, Trakan Phuet Phon District, Huay Fai, 15°32'44.3'N, 105°10'17.4’E, elev. 165 m, 28 July 2015, Olivier Raspé, OR1059 (CMUB, BR). ITS sequence accession number (SV0155): PP354891. Notes. The BLAST result based on ITS sequence obtained from one of the examined specimens (voucher SV0155, GenBank accession number PP354891) was 100% identical to the holotype of X. sisongkhramensis (vouch- er BBH 48255, accession number 0P462477) which was reported by Tan et al. 2022. This suggested that our collections belonged to X. sisongkhramensis. Morphological characters of our collections mostly fit the original description of the species. However, some variations were observed between ours and the original description as follows: Tan et al. (2022) mentioned the absence of cheilocystidia in X. sisongkhramensis while we could observe them in our col- lections; they were narrowly fusiform to fusiform with obtuse apex or narrowly utriform, thin-walled. The protologue mentioned broadly clavate to subclavate (40-60 x 8-15 um) caulocystidia. However, in our observation only groups of rising terminal cells of shape and size similar to the caulocystidia in Tan et al. (2022), were observed. What Tan et al. (2022) considered as caulocystid- ia were what we described as undifferentiated terminal cells of the stipitipel- lis. In the species protologue, the pileipellis and stipitipellis were described as composed of thick-walled hyphae (no measurement mentioned). However, only thin-walled hyphae were observed in our collections. Rostrupomyces sisongkhramensis is morphologically similar to Hemilecci- num duriusculum Mei-Xiang Li, Zhu L. Yang & G. Wu, which was recently de- scribed from China. The two species share some morphological characters in- cluding basidiome size and color, scattering of granular squamules on the stipe surface, pale yellow to grayish yellow hymenophore that is depressed around the stipe apex, and unchanging color in any parts. However, H. duriusculum differs by its strikingly venose pileus surface, finer granular squamules on the stipe surface, and subfusiform basidiospores ornamented with irregular warts under SEM (Liu et al. 2024). Rostrupomyces sisongkhramensis is also some- what similar to a European Leccinum species originally described from Italy, Leccinum albostipitatum den Bakker & Noordel., which has a similar shade of pileus color (light orange), whitish stipe covered with whitish squamules when young to reddish brown in age. However, L. albostipitatum can be differenti- ated by having an inflexed margin which exceeds the hymenophore by up to 4mm, yellowish white to very pale brown hymenophore that becomes brownish when bruised, a clear blue discoloration of the stipe base when touched, con- text staining vinaceous then grayish to blackish when cut, smooth fusiform ba- sidiospores, distribution in Europe, and association with Populus L. trees (den Bakker and Noordeloos 2005). Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 150 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Phylogenetically, R. sisongkhramensis is closely related to Rubinosporus au- riporus Vadthanarat, Raspé & Lumyong, the only known species in the genus, which was described from the same region as Rostrupomyces (northern Thai- land). However, it can be differentiated from R. sisongkhramensis by having grayish red to pastel red to reddish brown pileus; even stipe surface with scat- tered bright yellow to yellowish white to orange to light brown minute squamu- les; shorter tubes especially when young; golden yellow hymenophore; and the striking dark ruby spore print (Vadthanarat et al. 2022). Hemileccinum inferius Vadthanarat, Raghoonundon & Raspé, sp. nov. MycoBank No: 849063 Figs 6, 7 Etymology. “inferius” refers to the only lower part of the stipe ornamented with reticulum Holotype. THAILAND, Chiang Mai Province, Muang District, Doi Suthep-Pui National Park, 18°47'52.8"N, 98°54'21.2'E, elev. 1,170 m, 1 July 2016, Santhiti Vadthanarat, SV0282 (holotype: CMUB, isotype: BKF, MFUB). ITS sequence ac- cession number PP354892. Diagnosis. Hemileccinum inferius can be differentiated from resembling He- mileccinum species by a grayish red to reddish brown to dark brown, plane to sub-depressed, subrugulose to pitted pileus; and yellow to yellowish white, cy- lindrical with subbulbous stipe, with surface even on the upper half and subsca- brous to delicately reticulate on the lower half, as well as smooth basidiospores even when observed under SEM. Description. Basidiomata medium-sized. Pileus 66-68 mm in diameter, plane to sub-depressed at the centre; margin deflexed in age, elastic, slightly ex- ceeding (up to 1 mm); surface subrugulose to pitted especially near the margin, dull, moist to slippery when wet, tomentose, grayish red (8B/C3-4) to reddish brown (8D/E4-—6) to dark brown to reddish brown (7-8F4-6), unchanging when bruised; context 8-10 mm thick haft-way to the margin, firm to soft, pale yellow (1A3), slightly brown (7E5) near the pileus surface, light yellow (1A4) above Figure 6. Fresh basidioma of Hemileccinum inferius A, B SV0282 (holotype). Scale bars: 1 cm (A, B). MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 151 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum speci ee we, ee ee eee ee ee —— ian reuaintaen Necoilteas SRA Of yo A is Foci oe fi Sry; Ny ty ai F Figure 7. Microscopic features of Hemileccinum inferius A basidiospores B basidia C cheilocystidia D pleurocystidia E pileipellis F stipitipellis showing a cluster of clavate to boardy clavate like cells which moderately scattered on the stipitipellis. Scale bars: 10 um (A-D); 25 um (D-E); 50 um (E-F). All drawings were made from holotype type (SV0282). MycoKeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 152 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species the hymenium in age, unchanging when cut. Stipe 65-76 x 14-18 mm, central, terete, cylindrical with subbulbous base; surface even on the upper half then subscabrous to delicately reticulate on the lower half, dull, dry to moist, light yellow (2A4-6) to yellowish white to pale yellow (2A2-3) at the base, occasion- ally with reddish brown to dark brown spots (8D5-8, 8F7) at places, minutely covered with pale yellow to light brown to dark brown (2A3-4 to 7D/E4, 7F8) squamules on the upper half, slightly fibrillose following a reticulate pattern at the middle of the stipe getting less so to the base, unchanging when bruised; basal mycelium white (1A1); context solid, firm, pale yellow (2A3—5) especially in the above half near the stipe surface becoming yellowish white (2A2) to off- white at the base, unchanging when cut. Hymenophore tubulate, slightly de- pressed around the stipe, with slightly decurrent tooth, subventricose. Tubes 7-8 mm long half-way to the margin, yellow to grayish yellow (2A7 to 2B7) near the pileus context then olive (2E5) near the pores, separable from the pileus context, unchanging when bruised. Pores 0.3-0.8(1.2) mm wide at mid-radius, subangular to angular, even, grayish yellow (2B5), unchanging when touched, irregularly arranged; topography subregular. Odour mild fungoid. Taste mild. Spore print olive brown (4E7). Macrochemical reactions: KOH, brownish orange on pileus and hymeno- phore, pale orange on pileus context and stipe surface, and stipe context; NH,OH, brownish orange with purple aura on pileus, yellowish to brownish or- ange with purple aura on stipe surface, yellowish to greenish or slightly blue on pileus context and stipe context. Spores [118/2/2] (10.5-)11.4-12.9-14.6(-15.3) x (3.8-)4.2-4.8-5.6(- 6.1) um Q = (2.06—)2.4—2.68-3.05(—3.32). From the type (10.8-)11.5-12.7- 14.2(-14.5) x (4.1-)4.3-4.8-5.5(-6.1) um, Q = (2.06-)2.33-2.66-3.06(-3.1), N = 68, narrowly ellipsoid to subcylindrical with a slight suprahilar depression, thin-walled, smooth under light microscope and SEM (Fig. 5C-D), yellowish to brownish hyaline in water, yellowish hyaline in KOH, inamyloid. Basidia 4-spored, (23—)24-27-31(-32) x (11-)11-12-14(-14) pm, clavate without basal clamp connection, hyaline to yellowish hyaline in KOH; sterigmata up to 4 um long. Cheilocystidia (30-)34-54-72(-72) x (7-)8-10-14(-14) ym, narrowly fusi- form with elongated obtuse apex, frequent, thin-walled, hyaline to yellowish hy- aline in KOH. Pleurocystidia (34—)34—51-—69(-70) x (10-)10-11-13(-13) um, frequent near the pores, narrowly fusiform with elongated obtuse apex, thin- walled, hyaline to yellowish hyaline in KOH. Hymenophoral trama slightly diver- gent, 62-150 um wide composed of cylindrical, 4-12 um wide hyphae, with subregular mediostratum 30-100 um wide, hyaline in KOH. Pileipellis a hypho- epithelium, 80-112 um thick, the pileipellis composed of ellipsoid to broadly el- liosoid or cylindrical, thin-walled, more or less vertically arranged, occasionally branching or anastomosing, with metablematic, elongated-cylindrical hyphae (2-4 um wide hyphae), branching or anastomosing at places, hyaline to yel- lowish hyaline in KOH; terminal cells of 2 types: 1) ellipsoid to broadly ellipsoid, 8-15 x 12-20 um; and 2) clavate to broadly clavate with obtuse apex, 10-20 x 4-7 um. Pileus context made of moderately interwoven, ellipsoid to broad- ly ellipsoid, thin-walled hyphae, 10-23 um wide, hyaline in KOH. Stipitipellis arranged parallel to the surface of the stipe (40-50 um thick), composed of moderately interwoven, cylindrical, thin-walled, 2.5-4 um wide hyphae, anas- tomosing at places, moderately scattered with groups of rising cells to clus- MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 153 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species ters (50-60 um high) of thin-walled clavate to broadly clavate cells (20-30 x 10-15 um), hyaline to yellowish hyaline in KOH. Caulocystidia not seen. Stipe context composed of parallel, 8-22 um wide hyphae, hyaline in KOH. Clamp connections not seen in any tissue. Habitat and distribution. Solitary, on loamy soil in hill evergreen forest domi- nated by Fagaceae scattered with a few Dipterocarpus obtusifolius, at 985-1,170 m elevation. Currently known from Chiang Mai Province, northern Thailand. Additional specimens examined. THAILAND, Chiang Mai Province, Mae Taeng District, 19°06'59"N, 98°44'23'E, elev. 985 m, 6 June 2021, Bhavesh Rag- hoonundon, BRO260 (MFLU). Notes. Hemileccinum inferius is described based on collections from Thai- land. The comparison of the new species with the seven known Asian spe- cies follows. Hemileccinum albidum differs from H. inferius by gray-brown to chrome yellow to ochraceous or golden brown pileus; longer and slender stipe (up to 160 mm); shorter basidiospores (10-12.5 x 4.0-5.5 um); occurrence at higher elevations (1,968-—2,490 m; Li et al. 2021). Hemileccinum brevisporum is similar in pileus color but has shorter basidiospores (9-11 x 4—5 um); and it occurs under Fagaceae and Pinaceae, at higher elevations (1,700—2,120 m); Li et al. 2021). Hemileccinum duriusculum is macromorphologically quite similar, but differs by a strongly venose pileus surface, even when young, the absence of reticulum on the lower half of the stipe, as well as shorter cheilo- and pleuro- cystidia (Liu et al. 2024). Hemileccinum ferrugineipes has similar pileus surface and color but can be differentiated by the apparent pale red-brown color on the lower part of the stipe; and shorter basidiospores (11.0-12.5 x 4—5 um; Li et al. 2021). Hemileccinum indecorum is clearly different in having dark red to red- dish brown basidiomata with mucilaginous surface densely covered with whit- ish to dirty white, small conical to subconical to irregularly shaped squamules; incurved margin; and yellowish hymenophore that slowly turns brownish to red- dish brown when bruised (Horak 2011; Zeng et al. 2012). Hemileccinum parvum has smaller basidiomata (pileus 3.3-3.6 cm diam, stipe 60-97 x 4-9 mm); paler pileus (brownish to yellowish); pale yellow context that slowly turns pale blue when cut (Li et al. 2021). Hemileccinum rugosum has paler pileus (light orange to reddish orange); very distinctly rugose to wrinkled pileus surface; and shorter basidiospores (9-13 x 4—5 um; Wu et al. 2016). Hemileccinum inferius is also similar to an American species, H. floridanum, which has reddish brown to chestnut brown wrinkled and uneven pileus, whitish to pale yellow stipe, white basal mycelium, yellow hymenophore, and smooth basidiospore under both light microscope and SEM. However, the latter species is different by white context that slowly turns yellow often from the margin toward the center, longer basidiospores (10-17 x 4.5—6 um), likely forms asso- ciation with oak in northern America (Farid et al. 2021). Phylogenetically, H. inferius was most closely related to H. hortonii, H. ru- gosum, and an undescribed specimen (voucher HKAS 53421) from China. He- mileccinum hortonii, an American species, can easily be distinguished by its conspicuously pitted pileus, smooth to lightly pruinose stipe that sometimes has delicate reticulation on the upper half, pores that occasionally turn blue on when touched, and slightly longer and narrower basidiospores (12-15 x 3.5- 4.5; Kuo and Ortiz-Santana 2020; Farid et al. 2021). For morphological compar- ison with H. rugosum see the above paragraph. Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 154 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Discussion In this study, the morphological and phylogenetic evidence highly supported establishing Rostrupomyces as a new genus of Boletaceae to accommodate Xerocomus sisongkhramensis. The most important morphological characters used to differentiate the new genus from other Boletaceae genera are: subsca- brous stipe surface with scattered granulose squamules; hymenophore that is white in young basidiomes and becomes yellow in age; yellowish brown spore print; and broadly ellipsoid to ellipsoid basidiospores with smooth surface. The character of subscabrous to scabrous stipe surface dotted with scat- tered granulose squamules is also present in other Boletaceae genera such as Hemileccinum (see in notes under Rostrupomyces), Leccinum Gray, Leccinel- lum Bresinsky & Manfr. Binde, Rugiboletus G. Wu & Zhu L. Yang, and Sutorius Halling, Nuhn & N.A. Fechner. Leccinum can be separated from Rostrupomy- ces by having a white to pallid to light brown hymenophore while Leccinellum has yellow hymenophore similar to Rostrupomyces. However, both genera are different from Rostrupomyces by a more or less pronounced color change of hymenophore, stipe surface, and/or context, which can stain red, brown, yellow, or occasionally blue when bruised. Leccinellum and Leccinum produce boletoid basidiospores which are also different from Rostrupomyces. Moreover, they are phylogenetically distant and placed in another subfamily, the Leccinoideae (den Bakker and Noordeloos 2005; Wu et al. 2016; Xue et al. 2019; Meng et al. 2021). Rugiboletus differs from Rostrupomyces by its strongly wrinkled pileus (especially when young), yellow or brown or reddish brown hymenophore that is unchanging or turns bluish when bruised, subfusiform basidiospores, and phylogenetically distant and placed in Pulveroboletus group (Wu et al. 2015; Kuo and Ortiz-Santana 2020). Sutorius Halling, Nuhn & N.A. Fechner, is different in having chocolate to reddish brown or purplish brown basidiomata, grayish or reddish brown or brownish orange hymenophore, context always with scat- tered reddish or violet or dark brown encrustations that are visible with the na- ked eye, reddish brown spore deposit, and narrowly ellipsoid to subcylindrical basidiospores (Halling et al. 2012; Vadthanarat et al. 2021). Like Rugiboletus, Sutorius is phylogenetically distant from Rostrupomyces, belonging to the Pul- veroboletus group (Vadthanarat et al. 2021). Xerocomoideae genera other than Rostrupomyces also produce smooth ba- sidiospores, including Amylotrama, Aureoboletus, Alessioporus, Pulchroboletus, Rubinosporus, and Veloboletus. Moreover, while most Xerocomus and Phyllo- porus species produce basidiospores with bacillate surface, a few species pro- duce smooth basidiospores (Neves and Halling 2010; Wu et. al. 2016; Chuankid et al. 2019). However, only Amylotrama and Rubinosporus present the same shape of basidiospore as Rostrupomyces, whereas the others produce more or less oblong to ellipsoid to fusiform basidiospores (Gelardi et al. 2014; Wu et al. 2016; Farid et al. 2017; Frank et al. 2017; Zhang et al. 2019; Crous et al. 2020; Lebel et al. 2022; Vadthanarat et al. 2022). Amylotrama comprises two spe- cies from Australia, which are completely different from Rostrupomyces by their sequestrate basidiomata (Lebel et al. 2022). Rubinosporus, differs by having a strikingly thin hymenophore, especially when young; golden yellow hymeno- phore; and dark ruby spore print (Vadthanarat et al. 2022). Aureoboletus differs by the pileus usually having a viscid surface especially when moist; and golden MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 155 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species yellow hymenophore (Wu et al. 201; Zhang et al. 2019). Alessioporus is different by its reticulated stipe occasionally with a granular ring-like zone in the middle or lower half of the stipe, golden yellow hymenophore; blue staining of the stipe surface, hymenophore, and context; and distribution in Mediterranean Italy and subtropical USA (Gelardi et al. 2014; Frank et al. 2017). Pulchroboletus differs by the stipe surface with scattered red to reddish brown, occasionally with re- ticulum or longitudinal striations, and with a pseudo-annulus; golden yellow hy- menophore; intense blue staining of the hymenophore and context; and occur- rence only in Mediterranean Europe and tropical to subtropical America (Gelardi et al. 2014; Farid et al. 2017). The only Veloboletus species, is different by its basidiomata with a distinctive universal veil; blue staining of the pileus, stipe, hymenophore, and context, and distribution in Australia (Crous et al. 2020). Tan et al. (2022) phylogeny was based on ITS and LSU sequences of only Xerocomus spp., and Phylloporus as outgroup, which resulted in the cluster- ing of X. sisongkhramensis in Xerocomus. However, our phylogeny based on multiple protein-coding genes (atp6, cox3, tef1, and rpb2) and on a much wid- er taxon sampling of Boletaceae resolved X. sisongkhramensis in subfamily Xerocomoideae indeed, but distant from other Xerocomus species. Keeping X. sisongkhramensis would have rendered the genus polyphyletic. The erection of the new genus Rostrupomyces, which can also be morphologically separat- ed from Xerocomus, was therefore necessary. In the phylogeny, Rostrupomyces appeared sister to another monotypic ge- nus, Rubinosporus (morphological comparison see in notes under Rostrupo- myces sisongkhramensis). The two genera can be differentiated mainly by the spore print color, and color of hymenophore, two characters that do not vary between species in the same genus in Boletaceae. The characters have been primarily used to differentiate many genera in Boletaceae e.g., Sutorius, Caca- oporus, Hourangia, Baorangia (Halling et al. 2012; Wu et al. 2015; Zhu et al. 2015; Vadthanarat et al. 2019b). Additional morphological characters, includ- ing pileus color and stipe surface, could be useful to separate them. However, both genera so far comprise only a single species and the pileus color and stipe surface are found to be variable between species within the same genus. For example, in Boletus L. and Tylopilus P. Karst. the pileus color is variable from white, yellow, brown, orange, green, gray, and purple, and the stipe surface from even to reticulate to strongly reticulate (e.g., Cui et al. 2015; Wu et al. 2016; Li and Yang 2021). Hence, if more species in either of those two genera are de- scribed, the comparison between the two genera might need updating. Rostrupomyces has been found so far on sandy loam to sandy clay loam soils at elevations lower than 1,000 m (165 to 915 m), in open dry dipterocarp and dipterocarp forest mainly dominated by ectomycorrhizal trees in family Dipterocarpaceae genera Anthoshorea (A. roxburghii), Dipterocarpus (D. ob- tusifolius, D. tuberculatus, D. intricatus), Pentacme (P. siamensis), and Shorea (S. obtusa), with scattered Fagaceae trees. In Thailand the Dipterocarpaceae tree species are mainly distributed in lowland (<800 m) to mid-elevation forests (800-1,200 m) whereas Fagaceae trees are mostly distribute in mid-elevation to highland forests (>1,200 m) (Gardner et al. 2007). During our surveys on the diversity of Boletaceae in Thailand, no Rostrupomyces collection was found in the forests above 1,000 m, where no Anthoshorea, Dipterocarpus, Pentacme, or Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 156 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Shorea trees were observed or mentioned as occurring. This suggests that the distribution of Rostrupomyces depends on the distribution of the mentioned tree genera, and they are inferred as the associated tree hosts of Rostrupomy- ces. However, a more detailed study is needed to confirm the specificity of its relationship with ectomycorrhizal hosts. In this study, some specimens of Rostrupomyces sisongkhramensis were collected from community forests and the species was found to be consumed by local people, in Ubon Ratchathani and Sisaket provinces in lower northeast- ern Thailand. It is found on sale on roadsides and local markets, along with other Boletaceae in genera such as Baorangia, Boletus, Boletellus, Heimioporus, Retiboletus, Sutorius, and Tylopilus. The species is called “Hed Phueng Waan” in which the words “Hed Phueng” refer to bolete and “Waan” means sweet. It can also be called “Hed Phueng Kaw” in which the words “Kaw” means rice. The same local names are also applied to the other bolete species that are mostly white and have sweet taste after cooking such as Boletus spp. In this region a local name can be used for different mushroom species which present similarly striking morphological characters. Conversely, one mushroom spe- cies may have more than one local name. Rostrupomyces sisongkhramensis is also found in the northern parts of Thailand in Chiang Rai and Chiang Mai provinces. However, during our survey in the region, the species has never been found being collected or on sale for consumption by the locals. The protologue of this species (collections from upper northeastern Thailand) did not mention the edibility (Tan et al. 2022). To date, 15 Hemileccinum species have been described worldwide, among which eight are originally from Asia (China: H. albidum, H. brevisporum, H. duri- usculum, H. ferrugineipes, H. parvum, H. rugosum; Singapore: H. indecorum; and Thailand: H. inferius), two species from France in Europe (H. depilatum and H. impolitum), four species from North America (H. floridanum, H. hortonii, H. rubropunctum, and H. subglabripes), and a single species, H. brunneotomen- tosum, from Belize in Central America (Sutara 2008; Halling et al. 2015; Wu et al. 2016; Kuo and Ortiz-Santana 2020; Nitson and Frank 2020; Farid et al. 2021; Li et al. 2021; Liu et al. 2024). Three Hemileccinum species have been previ- ously reported to occur in Thailand, namely H. depilatum (reported as Boletus depilatus Redeuilh), H. impolitum (reported as B. impolitus Fr.), and H. indeco- rum (Chandrasrikul et al. 2011; Vadthanarat et al. 2019b). The first two species were originally described from France and were then reported from Thailand based on morphological identification only. As we know that the distribution of Boletaceae species depends on the distribution of their hosts, the ecology and host specificity are important characters in distinguishing species in Boleta- ceae (den Bakker et al. 2004; Dentinger et al. 2010; Cui et al. 2015; Loizides et al. 2019; Gelardi 2020). It is therefore doubtful that European species are also present in Southeast Asia where the forests are dominated by different tree species or families. Unfortunately, no specimens associated with the reports of occurrence in Thailand are available for molecular analysis to compare with European specimens. Moreover, molecular analysis of several Hemileccinum specimens obtained in our study showed none of them belong to those Euro- pean species. It is therefore reasonable to assume that the identifications of the Thai collections as H. depilatum and H. impolitum were not correct. The MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 157 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species other recorded species, H. indecorum was originally described from Singapore in Southeast Asia (Horak 2011). Specimens collected from Thailand were iden- tified based on both molecular and morphological evidences (Vadthanarat et al. 2019b). However, the full morphological description of this Thai collection has not yet been published. In the future, more detail on the species and more records of Hemileccinum will be reported. Basidiospores with tiny warts and pinholes (when observed under SEM) are typical of Hemileccinum. However, a few Hemileccinum species produce basid- iospores with smooth surface, including the new species (Kuo and Ortiz-San- tana et al. 2020; Farid et al. 2021). This kind of exception is also found in other Xerocomoideae genera i.e., in Phylloporus and Xerocomus, In the latter two gen- era, most of the species produce basidiospores with bacillate surfaces, but a few produce smooth basidiospores (Neves and Halling 2010; Wu et. al. 2016; Chuankid et al. 2019). A total of 39 new taxa (4 new genera and 35 new species), including those introduced in this paper, have been originally described from Thailand (Rostrup 1902; Yang et al. 2006; Desjardin et al. 2009; Choeyklin et al. 2012; Neves et al. 2012; Halling et al. 2014; Raspé et al. 2016; Vadthanarat et al. 2018; Chuankid et al. 2019; Phookamsak et al. 2019; Vadthanarat et al. 2019a, 2019b, 2020; Chuankid et al. 2021; Raghoonundon et al. 2021; Vadthanarat et al. 2021; Tan et al. 2022; Vadthanarat et al. 2022; This study). Our study on the diversity of Boletaceae in Thailand is still ongoing and is needed to uncover more new taxa and new distribution records for Thailand. Acknowledgements Authors are grateful for the permit number 0907.4/4769 granted by the Depart- ment of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources and Environment for collecting in Doi Suthep-Pui National Park. Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding This research work was supported by a Postdoctoral Fellowship from Mae Fah Luang University to Santhiti Vadthanarat, and partially funded by the Mae Fah Luang University research grant 641A01003. Author contributions Conceptualization: SV, OR. Data curation: BR, SV. Formal analysis: SV. Funding acqui- sition: OR. Investigation: SV. Methodology: SV. Project administration: OR. Resources: BR, OR, SV. Software: SV. Supervision: OR. Validation: SL, OR. Visualization: SV. Writing — original draft: SV. Writing - review and editing: BR, OR, SL. Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 158 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Author ORCIDs Santhiti Vadthanarat © https://orcid.org/0000-0002-9035-0375 Bhavesh Raghoonundon ® https://orcid.org/0000-0001-6671-2404 Olivier Raspé © https://orcid.org/0000-0002-8426-2133 Data availability All of the data that support the findings of this study are available in the main text. References Badou SA, Furneaux B, De Kesel A, Khan FK, Houdanon RD, Ryberg M, Yorou NS (2022) Paxilloboletus gen. nov., a new lamellate bolete genus from tropical Africa. Mycologi- cal Progress 21(1): 243-256. https://doi.org/10.1007/s11557-021-01756-y Binder M, Hibbett DS (2006) Molecular systematics and biological diversification of Bole- tales. Mycologia 98(6): 971-981. https://doi.org/10.1080/15572536.2006.11832626 Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of agaricomycetidae dominated by cortici- oid forms. Mycologia 102(4): 865-880. https://doi.org/10.3852/09-288 Chandrasrikul A, Suwanarit P Sangwanit U, Lumyong S, Payapanon A, Sanoamuang N, Pu- kahuta C, Petcharat V, Sardsud U, Duengkae K, Klinhom U, Thongkantha S, Thongklam S (2011) Checklist of Mushrooms (Basidiomycetes) in Thailand. Office of Natural Re- sources and Environmental Policy and Planning, Bangkok, Thailand, 448 pp. Choeyklin R, Boonpratuang T, Sommai S, Somrithipol S (2012) Octaviania violascens: A new sequestrate bolete from Thailand. Mycotaxon 120(1): 149-155. https://doi. org/10.5248/120.149 Chuankid B, Vadthanarat S, Hyde KD, Thongklang N, Zhao R, Lumyong S, Raspé O (2019) Three new Phylloporus species from tropical China and Thailand. Mycological Prog- ress 18(5): 603-614. https://doi.org/10.1007/s11557-019-01474-6 Chuankid B, Vadthanarat S, Thongbai B, Stadler M, Lumyong S, Hyde KD, Raspé O (2021) Retiboletus (Boletaceae) in northern Thailand: One novel species and two first re- cords. Mycoscience 62(5): 62. https://doi.org/10.47371/mycosci.2021.05.003 Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P Carnegie AJ, Moreno G, Luangsa-Ard J, Thangavel R, Alexandrova AV, Baseia IG, Bellanger J-M, Bessette AE, Bessette AR, Delapena-Lastra S, Garcia D, Gené J, Pham THG, Heykoop M, Ma- lysheva E, Malysheva V, Martin MP Morozova OV, Noisripoom W, Overton BE, Rea AE, Sewall BJ, Smith ME, Smyth CW, Tasanathai K, Visagie CM, Adamik S, Alves A, Andrade JP Aninat MJ, Araujo RVB, Bordallo JJ, Boufleur T, Baroncelli R, Barreto RW, Bolin J, Cabero J, Cabo M, Cafa G, Caffot MLH, Cai L, Carlavilla JR, Chavez R, De- castro RRL, Delgat L, Deschuyteneer D, Dios MM, Dominguez LS, Evans HC, Eyssar- tier G, Ferreira BW, Figueiredo CN, Liu F, Fournier J, Galli-Terasawa LV, Gil-Duran C, Glienke C, Goncalves MFM, Gryta H, Guarro J, Himaman W, Hywel-Jones N, Iturrie- ta-Gonzalez |, lvanushkina NE, Jargeat P, Khalid AN, Khan J, Kiran M, Kiss L, Kochkina GA, Kolaik M, Kubatova A, Lodge DJ, Loizides M, Luque D, Manjon JL, Marbach PAS, Massolajr NS, Mata M, Miller AN, Mongkolsamrit S, Moreau P-A, Morte A, Mujic A, Navarro-Rodenas A, Nemeth MZ, Nobrega TF, Novakova A, Olariaga |, Ozerskaya SM, Palma MA, Petters-Vandresen DAL, Piontelli E, Popov ES, Rodriguez A, Requejo O, Rodrigues ACM, Rong IH, Roux J, Seifert KA, Silva BDB, Sklena F, Smith JA, Sousa JO, Souza HG, Desouza JT, Vec K, Tanchaud P, Tanney JB, Terasawa F, Thanakitpi- MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 159 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species pattana D, Torres-Garcia D, Vaca |, Vaghefi N, Vaniperen AL, Vasilenko OV, Verbeken A, Yilmaz N, Zamora JC, Zapata M, Jurjevié Z, Groenewald JZ (2019) Fungal Planet description sheets: 951-1041. Persoonia 43(1): 223-425. https://doi.org/10.3767/ persoonia.2019.43.06 Crous PW, Cowan DA, Maggs-kolling G, Yilmaz N, Larsson E, Angelini C, Brandrud TE, Dearnaley JDW, Dima B, Dovana F, Fechner N, Garcia D, Gené J, Halling RE, Houbraken J, Leonard P, Luangsa-ard JJ, Noisripoom W, Rea-Ireland AE, Sevcikova H, Smyth CW, Vizzini A, Adam JD, Adams GC, Alexandrova AV, Alizadeh A, Alvarez Duarte E, Andjic V, Antonin V, Arenas F, Assabgui R, Ballara J, Banwell A, Berraf-Tebbal A, Bhatt VK, Bonito G, Botha W, Burgess TI, Cabon M, Calvert J, Carvalhais LC, Courtecuisse R, Cul- lington P, Davoodian N, Decock CA, Dimitrov R, Di Piazza S, Drenth A, Dumez S, Eich- meier A, Etayo J, Fernandez |, Fiard J-P Fournier J, Fuentes-Aponte S, Ghanbary MAT, Ghorbani G, Giraldo A, Glushakova AM, Gouliamova DE, Guarro J, Halleen F, Hampe F, Hernandez-Restrepo M, Iturrieta-Gonzalez |, Jeppson M, Kachalkin AV, Karimi O, Khalid AN, Khonsanit A, Kim JI, Kim K, Kiran M, Krisai-Greilhuber |, Kucera V, KuSan |, Langenhoven SD, Lebel T, Lebeuf R, Liimatainen K, Linde C, Lindner DL, Lombard L, Mahamedi AE, Matocec N, Maxwell A, May TW, McTaggart AR, Meijer M, Mesié A, Mileto AJ, Miller AN, Molia A, Mongkolsamrit S, Muhoz Cortés C, Munoz-Mohedano J, Morte A, Morozova OV, Mostert L, Mostowfizadeh-Ghalamfarsa R, Nagy LG, Navar- ro-Rédenas A, Orstadius L, Overton BE, Papp V, Para R, Peintner U, Pham THG, Por- del A, Posta A, Rodriguez A, Romberg M, Sandoval-Denis M, Seifert KA, Semwal KC, Sewall BJ, Shivas RG, Slovak M, Smith K, Spetik M, Spies CFJ, Syme K, Tasanathai K, Thorn RG, Tkalcec Z, Tomashevskaya MA, Torres-Garcia D, Ullah Z, Visagie CM, Voitk A, Winton LM, Groenewald JZ (2020) Fungal Planet description sheets: 1112-1181. Persoonia 45(1): 251-409. https://doi.org/10.3767/persoonia.2020.45.10 Cui YY, Feng B, Wu G, Xu J, Yang ZL (2015) Porcini mushrooms (Boletus sect. Boletus) from China. Fungal Diversity 81(1): 189-212. https://doi.org/10.1007/s13225-015- 0336-7 Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: More models, new heu- ristics and parallel computing. Nature Methods 9(8): 772. https://doi.org/10.1038/ nmeth.2109 den Bakker HC, Noordeloos ME (2005) A revision of European species of Leccinum Gray and notes on extralimital species. Persoonia 18: 511-587. den Bakker HC, Zuccarello GC, Kuyper THW, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. The New Phytologist 163(1): 201-215. https://doi.org/10.1111/j.1469-8137.2004.01090.x Dentinger BTM, Ammirati JF, Both EE, Desjardin DE, Halling RE, Henkel TW, Moreau PA, Nagasawa E, Soytong K, Taylor AF, Watlingm R, Moncalvo JM, McLaughlin DJ (2010) Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Molecular Phylogenetics and Evolution 57(3): 1276-1292. https://doi.org/10.1016/j. ympev.2010.10.004 Desjardin DE, Binder M, Roekring S, Flegel T (2009) Spongiforma, a new genus of gas- troid boletes from Thailand. Fungal Diversity 37: 1-8. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus (San Francis- eo, Calif)12: 13=15. Farid A, Franck AR, Garey JR (2017) Boletus rubricitrinus belongs in Pulchroboletus (Bo- letaceae). Czech Mycology 69(2): 143-162. https://doi.org/10.33585/cmy.69204 Farid A, Bessette AE, Bessette AR, Bolin JA, Kudzma LV, Franck AR, Garey JR (2021) In- vestigations in the boletes (Boletaceae) of southeastern USA: Four novel species and Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 160 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species three novel combinations. Mycosphere 12(1): 1038-1076. https://doi.org/10.5943/ mycosphere/12/1/12 Frank JL, Bessette AR, Bessette AE (2017) Alessioporus rubriflavus (Boletaceae), a new species from the eastern United States. North American Fungi 12(2): 1-8. Gardner S, Sidisunthorn P Anusarnsunthorn V (2007) A field guide to forest trees of Northern Thailand, Bangkok, Thailand. Gelardi M (2020) Diversity, Biogeographic Distribution, Ecology, and Ectomycorrhizal Re- lationships of the Edible Porcini Mushrooms (Boletus s. str., Boletaceae) Worldwide: State of the Art and an Annotated Checklist. In: Pérez-Moreno J, Guerin-Laguette A, Flores Arzu R, Yu FQ (Eds) Mushrooms, Humans and Nature in a Changing World. Springer, Cham, 223-271. https://doi.org/10.1007/978-3-030-37378-8_8 Gelardi M, Simonini G, Ercole E, Vizzini A (2014) Alessioporus and Pulchroboletus gen. nov. (Boletaceae, Boletineae), two novel genera to accommodate Xerocomus ichnu- sanus and X. roseoalbidus from European Mediterranean basin: Molecular and mor- phological evidence. Mycologia 106(6): 1168-1187. https://doi.org/10.3852/14-042 Gelardi M, Simonini G, Ercole E, Davoli P Vizzini A (2015) Cupreoboletus (Boletaceae, Boletineae), anew monotypic genus segregated from Boletus sect. Luridi to reassign the Mediterranean species B. poikilochromus. Mycologia 107(6): 1254-1269. https:// doi.org/10.3852/15-070 Halling RE, Nuhn M, Fechner NA, Osmandson TW, Soytong K, Arora D, Hibbett DS, Binder M (2012) Sutorius: A new genus for Boletus eximius. Mycologia 104(4): 951-961. https://doi.org/10.3852/1 1-376 Halling RE, Desjardin DE, Fechner N, Arora D, Soytong K, Dentinger BTM (2014) New por- cini (Boletus sect. Boletus) from Australia and Thailand. Mycologia 106(4): 830-834. https://doi.org/10.3852/1 3-340 Halling RE, Fechner N, Nuhn M, Osmundson T, Soytong K, Arora D, Binder M, Hibbett D (2015) Evolutionary relationships of Heimioporus and Boletellus (Boletales), with an emphasis on Australian taxa including new species and new combinations in Aureo- boletus, Hemileccinum and Xerocomus. Australian Systematic Botany 28(1): 1-22. https://doi.org/10.1071/SB14049 Henkel TW, Obase K, Husbands D, Uehling JK, Bonito G, Aime MC, Smith ME (2016) New Boletaceae taxa from Guyana: Binderoboletus segoi gen. and sp. nov., Guyanap- orus albipodus gen. and sp. nov., Singerocomus rubriflavus gen. and sp. nov., and a new combination for Xerocomus inundabilis. Mycologia 108(1): 157-173. https://doi. org/10.3852/15-075 Horak E (1980) Supplementary remark to Austroboletus (Corner) Wolfe (Boletaceae). Sydowia 33: 71-87. Horak E (2011) Revision of Malaysian species of Boletales s.|. (Basidiomycota) de- scribed by Corner EJH (1972, 1974). Forest Research Institute and Ministry of Natural Resources and Environment, Malaysia, 283 pp. Hosen MI, Feng B, Wu G, Zhu XT, Li YC, Yang ZL (2013) Borofutus, a new genus of Bole- taceae from tropical Asia: phylogeny, morphology and taxonomy. Fungal Diversity 58: 215-226. https://doi.org/10.1007/s13225-012-0211-8 Hosen MI, Yang ZL (2021) Kaziboletus, a new boletoid genus of Boletaceae associated with Shorea robusta in Bangladesh. Mycological Progress 20(9): 1145-1156. https:// doi.org/10.1007/s11557-021-01 723-7 Katoh K, Standley DM (2013) MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780. https://doi.org/10.1093/molbev/mst010 MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 161 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Khmelnitsky O, Davoodian N, Singh P, Raspé O, Lee SML, Fechner N, Bonito G, Lebel T, Halling RE (2019) lonosporus: A new genus for Boletus longipes (Boletaceae), with a new species, /. australis, from Australia. Mycological Progress 18(3): 439-451. https://doi.org/10.1007/s11557-018-01463-1 Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour. 3"? edn. Eyre Methuen Ltd, London, 252 pp. Kuo M, Ortiz-Santana B (2020) Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia 112(1): 197- 211. https://doi.org/10.1080/00275514.2019.1685351 Lebel T, Davoodian N, Bloomfield MC, Syme K, May TW, Hosaka K, Castellano MA (2022) A mixed bag of sequestrate fungi from five different families: Boletaceae, Russula- ceae, Psathyrellaceae, Strophariaceae, and Hysterangiaceae. Swainsona 36: 33-65. Li YC, Yang ZL (2021) The Boletes of China: Tylopilus s.|. Springer, Singapore, 418 pp. https://doi.org/10.1007/978-981-16-2986-0_1 Li YC, Feng B, Yang ZL (2011) Zangia, a new genus of Boletaceae supported by mo- lecular and morphological evidence. Fungal Diversity 49(1): 125-143. https://doi. org/10.1007/s13225-01 1-0096-y Li YC, Ortiz-Santana B, Zeng NK, Feng B, Yang ZL (2014) Molecular phylogeny and taxonomy of the genus Veloporphyrellus. Mycologia 106(2): 291-306. https://doi. org/10.3852/106.2.291 Li MX, Wu G, Yang ZL (2021) Four new species of Hemileccinum (Xerocomoideae, Boletaceae) from Southwestern China. Journal of Fungi 7(10): 823. https://doi. org/10.3390/jof7100823 Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J, Bojantchev D, Abdel-Wahab MA, Zhang M, Tian E, Lu Y-Z, Zhang J-Y, Ma J, Dutta AK, Acharya K, Du T-Y, Xu J, Kim JS, Lim YW, Gerlach A, Zeng N-K, Han Y-X, Razaghi P Raza M, Cai L, Calabon MS, Jones EBG, Saha R, Kumar TKA, Krishnapri- ya K, Thomas A, Kaliyaperumal M, Kezo K, Gunaseelan S, Singh SK, Singh PN, Lagashet- ti AC, Pawar KS, Jiang S, Zhang C, Zhang H, Qing Y, Bau T, Peng X-C, Wen T-C, Ramirez NA, Niveiro N, Li M-X, Yang ZL, Wu G, Tarafder E, Tennakoon DS, Kuo C-H, da Silva TM, Souza-Motta CM, Bezerra JDP, He G, Ji X-H, Suwannarach N, Kumla J, Lumyong S, Wannathes N, Rana S, Hyde KD, Zhou L-W (2024) Fungal diversity notes 1717-1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fun- gal Diversity 124(1): 1-216. https://doi.org/10.1007/s13225-023-00529-0 Loizides M, Bellanger JM, Assyov B, Moreau PA, Richard F (2019) Present status and future of boletoid fungi (Boletaceae) on the island of Cyprus: Cryptic and threat- ened diversity unravelled by ten-year study. Fungal Ecology 10: 65-81. https://doi. org/10.1016/j.funeco.2019.03.008 Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (/nocybe; Agaricales). Molecular Phylogenetics and Evo- lution 35(1): 1-20. https://doi.org/10.1016/j.ympev.2004.11.014 Meng X, Wang GS, Wu G, Wang PM, Yang ZL, Li YC (2021) The genus Leccinum Boleta- ceae, Boletales) from China based on morphological and molecular data. Journal of Fungi (Basel, Switzerland) 7(9): 732. https://doi.org/10.3390/jof7090732 Miller MA, Holder MT, Vos R, Midford PE, Liebowitz T, Chan L, Hoover P Warnow T (2009) The CIPRES portals. CIPRES. http://www.phylo.org/portal2/home Neves MA, Halling RE (2010) Study on species of Phylloporus |: Neotropics and North America. Mycologia 102(4): 923-943. https://doi.org/10.3852/09-215 Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 162 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Neves MA, Binder M, Halling R, Hibbett D, Soytong K (2012) The phylogeny of select- ed Phylloporus species inferred from NUC-LSU and ITS sequences, and descriptions of new species from the Old World. Fungal Diversity 55(1): 109-123. https://doi. org/10.1007/s13225-012-0154-0 Nitson DD, Frank JL (2020) Nomenclatural novelties. Index Fungorum: Published Num- bers 443: 1. Nuhn ME, Binder M, Taylor AFS, Halling RE, Hibbett DS (2013) Phylogenetic overview of the Boletineae. Fungal Biology 117(7-8): 479-511. https://doi.org/10.1016/j.fun- bio.2013.04.008 Orihara T, Smith ME, Shimomura N, lwase K, Maekawa N (2012) Diversity and systemat- ics of the sequestrate genus Octaviania in Japan: Two new subgenera and eleven new species. Persoonia 28(1): 85-112. https://doi.org/10.3767/003158512X650121 Orihara T, Lebel T, Ge Z-W, Smith ME, Maekawa N (2016) Evolutionary history of the sequestrate genus Rossbeevera (Boletaceae) reveals a new genus Turmalinea and highlights the utility of ITS minisatellite-like insertions for molecular identification. Persoonia 37(1): 173-198. https://doi.org/10.3767/003158516X691212 Phookamsak R, Hyde KD, Wanasinghe DN, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan §S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mesié A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang G-N, Jiang H-B, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kusan I, Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He M-Q, Duenhas M, Jadan M, Martin MP Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matocec N, de Silva NI, Pereira OL, Singh PN, Manimohan P Uniyal P Shang Q-J, Bhatt RP Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh S-Y, Huang S-K, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu X-D, Lu Y-Z, Lim YW, Chen Y, Tkaléec Z, Zhang Z-F, Luo Z-L, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang L-Z, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P Zhao R-L, Lumyong S, Boonmee S, Wen T-C, Mortimer PE, Xu J (2019) Fungal diversity notes 933-1040: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 95(1): 1-273. https://doi.org/10.1007/s13225-019-00421-w Raghoonundon B, Davoodian N, Phonemany M, Raspé O (2021) Tylocinum is no longer monotypic: Tylocinum brevisporum sp. nov. (Boletales, Boletaceae) from northern Thailand. Biodiversity Data Journal 9: e75907. https://doi.org/10.3897/BDJ.9.e75907 Raspé O, Vadthanarat S, De Kesel A, Degreef J, Hyde KD, Lumyong S (2016) Pulveroboletus fragrans, anew Boletaceae species from Northern Thailand, with a remarkable aromat- ic odor. Mycological Progress 15(4): 38. https://doi.org/10.1007/s11557-016-1179-7 Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-a sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1): 84-98. https://doi.org/10.3852/mycologia.97.1.84 Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029 Rostrup E (1902) Fungi. In: Schmidt J (Ed.) Flora of Koh Chang, Contributions to the knowl- edge of the vegetation in the gulf of Siam, Part 6, Botanisk Tidsskrift 24: 355-367. MycoKkeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 163 Santhiti Vadthanarat et al.: A new genus, Rostrupomyces and a new Hemileccinum species Saccardo PA, Saccardo D (1905) Sylloge fungorum omnium hucusque cognitorum Vol. 17. Sato H, Hattori T (2015) New species of Boletellus section Boletellus (Boletaceae, Bo- letales) from Japan, B. aurocontextus sp. nov. and B. areolatus sp. nov. PLoS ONE 10(6): e€0128184. https://doi.org/10.1371/journal.pone.0128184 Stamatakis A (2006) RAxML-vi-hpc: Maximum likelihood-based phylogenetic analy- ses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688-2690. https://doi.org/10.1093/bioinformatics/btl446 Sutara J (2008) Xerocomus s. |. in the light of the present state of knowledge. Czech Mycology 60(1): 29-62. https://doi.org/10.33585/cmy.60104 Tan YP, Bishop-Hurley SL, Shivas RG, Cowan DA, Maggs-kKolling G, Maharachchikum- bura SSN, et al. (2022) Fungal planet description sheets: 1436-1477. Persoonia 49: 261-350. https://doi.org/10.3767/persoonia.2022.49.08 Vadthanarat S, Raspé O, Lumyong S (2018) Phylogenetic affinities of the sequestrate genus Rhodactina (Boletaceae), with a new species, R. rostratispora from Thailand. Mycokeys 29: 63-80. https://doi.org/10.3897/mycokeys.29.22572 Vadthanarat S, Amalfi M, Halling RE, Bandala V, Lumyong S, Raspé O (2019a) Two new Erythrophylloporus species (Boletaceae) from Thailand, with two new combina- tions of American species. MycoKeys 55: 29-57. https://doi.org/10.3897/mycok- eys.55.34570 Vadthanarat S, Lumyong S, Raspé O (2019b) Cacaoporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 54: 1-29. https://doi.org/10.3897/my- cokeys.54.35018 Vadthanarat S, Lumyong S, Raspé O (2020) Heimioporus subcostatus, a new Boletaceae species from northern and northeastern Thailand. Phytotaxa 475(1):018-028. Vadthanarat S, Halling RE, Amalfi M, Lumyong S, Raspé O (2021) An unexpectedly high number of new Sutorius (Boletaceae) species from northern and northeastern Thai- land. Frontiers in Microbiology 12: 1-27. https://doi.org/10.3389/fmicb.2021.643505 Vadthanarat S, Raspé O, Lumyong S (2022) Rubinosporus auriporus gen. et sp. nov. (Bo- letaceae: Xerocomoideae) from tropical forests of Thailand, producing unusual dark ruby spore deposits. Journal of Fungi 8(3): 278. https://doi.org/10.3390/jof8030278 Wu G, Feng B, Xu J, Zhu XT, Li YC, Zeng NK, Hosen MI, Yang ZL (2014) Molecular phylo- genetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Diversity 69(1): 93-115. https://doi.org/10.1007/ $13225-014-0283-8 Wu G, Zhao K, Li YC, Zeng NK, Feng B, Halling RE, Yang ZL (2015) Four new genera of the fungal family Boletaceae. Fungal Diversity 81(1): 1-24. https://doi.org/10.1007/ $13225-015-0322-0 Wu G, Li YC, Zhu XT, Zhao K, Han LH, Cui YY, Li F, Xu JP Yang ZL (2016) One hundred note- worthy boletes from China. Fungal Diversity 81(1): 25-188. https://doi.org/10.1007/ $13225-016-0375-8 Wu G, Lee SML, Horak E, Yang ZL (2018) Spongispora temasekensis, a new boletoid genus and species from Singapore. Mycologia 110(5): 919-929. https://doi.org/10. 1080/00275514.2018.1496387 Wu G, Li MX, Horak E, Yang ZL (2021) Phylogenetic analysis reveals the new genus Amoenoboletus from Asia and New Zealand. Mycologia 114(1): 144-156. https:// doi.org/10.1080/00275514.2021.1971450 Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 164 Santhiti Vadthanarat et al.: Anew genus, Rostrupomyces and a new Hemileccinum species Xue R, Wu LL, Jiang S, Hao YJ, Chai H, Liang ZQ, Zeng NK, Su MS (2019) Two new species of the genus Leccinellum (Boletaceae, Boletales) from the south of China. Phytotaxa 411(2): 093-104. https://doi.org/10.11646/phytotaxa.411.2.1 Yang ZL, Trappe JM, Binder M, Sanmee R, Lumyong P, Lumyong S (2006) The seques- trate genus Rhodactina (Basidiomycota, Boletales) in northern Thailand. Mycotaxon 96: 133-140. Zeng NK, Cai Q, Yang ZL (2012) Corneroboletus, a new genus to accommodate the southeastern Asian Boletus indecorus. Mycologia 104(6): 1420-1432. https://doi. org/10.3852/11-326 Zhang M, Li TH, Wang C-Q, Song B, Xu J (2015) Aureoboletus formosus, a new bolete species from Hunan Province of China. Mycological Progress 14(12): 118. https:// doi.org/10.1007/s11557-015-1142-z Zhang M, Li TH, Wang C-Q, Zeng N-K, Deng W-Q (2019) Phylogenetic overview of Au- reoboletus (Boletaceae, Boletales), with descriptions of six new species from China. Mycokeys 61: 111-145. https://doi.org/10.3897/mycokeys.61.47520 Zhao K, Wu G, Feng B, Yang ZL (2014a) Molecular phylogeny of Caloboletus (Boletace- ae) and a new species in East Asia. Mycological Progress 13(4): 1127-1136. https:// doi.org/10.1007/s11557-014-1001-3 Zhao K, Wu G, Yang ZL (2014b) A new genus, Rubroboletus, to accommodate Boletus sinicus and its allies. Phytotaxa 188(2): 61-77. https://doi.org/10.11646/phyto- taxa.188.2.1 Zhu XT, Wu G, Zhao K, Halling RE, Yang ZL (2015) Hourangia, a new genus of Boletace- ae to accommodate Xerocomus cheoi and its allied species. Mycological Progress 14(6): 37. https://doi.org/10.1007/s11557-015-1060-0 Mycokeys 103: 129-165 (2024), DOI: 10.3897/mycokeys.103.107935 165