683 MycoKeys MycoKeys 106: 201-224 (2024) DOI: 10.3897/mycokeys.106.125831 Research Article Morphological characteristics and phylogenetic analyses revealed four new wood inhabiting fungi (Agaricomycetes, Basidiomycota) in Xizang Autonomous Region, China Hong-Min Zhou'®, Xun-Chi Zhang, Jie-Ting Li?, Fang Wu*®, Chang-Lin Zhao'?© 1 The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, China 2 College of Forestry, Southwest Forestry University, Kunming 650224, China 3 Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, Nyingchi, Tibet 860000, China 4 Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Corresponding authors: Chang-Lin Zhao (fungichanglinz@163.com); Fang Wu (fangwubjfu2014@yahoo.com) OPEN Qaccess This article is part of: Diversity, taxonomy, and systematics of macrofungi from tropical Asia Edited by Olivier Raspé, Rui-Lin Zhao, Jennifer Luangsa-ard Academic editor: Rui-Lin Zhao Received: 20 April 2024 Accepted: 27 May 2024 Published: 25 June 2024 Citation: Zhou H-M, Zhang X-C, Li J-T, Wu F, Zhao C-L (2024) Morphological characteristics and phylogenetic analyses revealed four new wood inhabiting fungi (Agaricomycetes, Basidiomycota) in Xizang Autonomous Region, China. Mycokeys 106: 201-224. https://doi. org/10.3897/mycokeys.106.125831 Copyright: © Hong-Min Zhou et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract Four new fungi from Xizang in southwest China, Calocera ramaria, Ceraceomyces rhi- zomorphus, Leptosporomyces linzhiensis, and Ramaria xizangensis are described and illustrated based on the morphological and molecular evidence. Calocera ramaria is characterized by the ramal and bright orange basidiomata, a monomitic hyphal system with simple septa generative hyphae, usually 4-septate basidiospores; Ceraceomyces rhizomorphus is characterized by the cream to yellowish basidiomata with rhizomorphs, cylindrical basidiospores; Leptosporomyces linzhiensis is characterized by white with pink basidiomata, cylindrical to oblong ellipsoid basidiospores; Ramaria xizangensis is characterized by flesh pink basidiomata, branched dichotomously in 4-5 ranks, a monomitic hyphal system with clamped generative hyphae, ellipsoid to cylindrical and densely warted basidiospores. Key words: Molecular systematic, phylogenetic analysis, taxonomy, wood-decaying fungi Introduction The fruiting bodies of Basidiomycota exhibit complex forms, such as gilled, poroid, toothed, coralloid basidiomata. Numerous taxonomists have endeav- ored to construct a stable classification system based on these characters (Gaumann 1953). Recently, the analysis of DNA sequences has emerged as a common method for deducing fungal phylogenies and enhancing higher clas- sification frameworks through the integration of genetic traits (Cui et al. 2019; Wijayawardene et al. 2020; Liu et al. 2023). The abundance of biodiversity in Abies forests can be attributed to the plen- tiful presence of humus and mycorrhizal fungi, which foster an optimal environ- ment for the proliferation of the macrofungal species. Information regarding the fungal diversity in Abies communities is scattered over a range of publications 201 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China (Ryvarden and Gilbertson 1993; Dai 2022). Ceraceomyces Jilich, a small genus characterized by yellow rhizomorphic basidiomata, was established by Julich based on the taxon C. tessulatus (Cooke) Jillich (Jiilich 1972). This genus, orig- inally from North America, features annual, resupinate, pellicular basidioma- ta with a smooth or merulioid hymenial surface, a monomitic hyphal system, narrowly clavate basidia, and subglobose, narrowly ovate, ellipsoid to cylindri- cal basidiospores (Chikowski et al. 2016). Phylogenetic studies revealed that Ceraceomyces was polyphyletic, comprising three distinct groups. The section of Corticium tessulatum Cooke belonged to Polyporales, and Ceraceomyces serpens (Tode) Ginns and C. eludens K.H. Larss. were part of phlebioid clade (Larsson et al. 2004). A recent study indicated that the type species, Corticium tessulatum is classified under the order Amylocorticiales (Binder et al. 2010; Chikowski et al. 2016), as well as species, C. yunnanensis Qi Yuan & C.L. Zhao and C. borealis (Romell) J. Erikss. & Ryvarden (Yuan et al. 2023). Currently, elev- en species are recognized in the genus Ceraceomyces, including C. cystidiatus (J. Erikss. & Hjortstam) Hjortstam, C. eludens, C. microsporus K.H. Larss. and C. sublaevis (Bres.) Julich were accepted in the genus. A genus, Crystallicutis El-Gharabawy, Leal-Dutra & G.W. Griff. was derived from Ceraceomyces based on the crystals in the hymenium and subiculum of the basidiomata, which in- cludes the brown-rot species C. serpens (El-Gharabawy et al. 2021). Both spe- cies C. sulphurinus and C. violascens (Fr.) Jscens were recorded in Ceraceomy- ces, are considered congeneric with Rhizochaete Gresl., Nakasone & Rajchenb. due to the characteristics like the rhizomorphic margin and the purple reaction in KOH. Calocera (Fr.) Fr. is known for its distinctive characteristics, stipitate, fascicu- late or scattered, gelatinous basidiomata, dendroid or staghorn-like, subclavate to clavate basidia and probasidia, as well as cylindrical to reniform, septate or non-septate basidiospores (Fisher 1931; Lowy 1971; Peng et al. 1992; Wu et al. 2011; Shirouzu et al. 2017). Recent phylogenetic analyses of the class Dacry- mycetes demonstrated that Calocera was polyphyletic and species in the ge- nus are scattered throughout the family Dacrymycetaceae together with most of the species of Dacrymyces Nees (1817: 89) as well as a few species from other genera such as Dacryopinax G.W. Martin (1948: 116) and Femsjonia Fr. (Shirouzu et al. 2007; Zamora and Ekman 2020). The genus Leptosporomyces Julich is characterized by the resupinate basid- iomata, white yellow and smooth hymenial surface, a monomitic hyphal sys- tem with clamped connections, and thin-wall, smooth, acyanophilous basidio- spores. Recent research has indicated that Leptosporomyces was polyphyletic, with two taxa, L. galzinii (Bourdot) Julich and L. raunkiaeri (M.P. Christ.) Julich, grouped in the order Atheliales, while L. septentrionalis (J. Erikss.) Krieglst. was placed in the order Amylocorticiales (Larsson 2007; Hodkinson et al. 2014; Sulistyo et al. 2021). The generic delimitation of Fibulomyces Julich and Lepto- sporomyces remains controversial, with both being indistinguishable in phylo- genetic and morphological analyses, leading to the former being considered as a synonym of the latter (Bernicchia and Gorjon 2010). Ramaria Fr. ex Bonord. is a widely distributed non-gilled Basidiomycete genus (Marr and Stuntz 1973; Petersen 1981; Humpert et al. 2001). The ge- nus is recognized by branched basidiomata, mono- to dimitic hyphal systems with clamped or simple-septate generative hyphae, and smooth to echinulate, MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 202 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China verrucose-reticulate or striate ornamentation basidiospores (Corner 1950; Marr and Stuntz 1973; Petersen 1981; Humpert et al. 2001). The genus has been classified into four subgenera, namely R. subg. Ramaria, R. subg. Laeti- colora Marr & D.E. Stuntz, R. subg. Lentoramaria Corner, and R. subg. Echinora- maria Corner (Marr and Stuntz 1973; Humpert et al. 2001; Exeter et al. 2006; Knudson 2012; Hanif et al. 2019). Initially, Ramaria was treated as a subgenus within Clavaria (Coker 1923; Doty 1944) until Corner (1970) elevated it to ge- nus rank. Studies based on the morphological and molecular data agree on the paraphyletic state of Ramaria (Humpert et al. 2001; Hosaka et al. 2006; Giachini et al. 2010). In the present paper, species from four genera are collected from Xizang under forest of Abies, and the phylogenetic relationships of four taxa are still unclear. Thus, to explore the diversity and taxonomic status with different char- acters for those taxa will be significant for macrofungi in Xizang, and the taxon- omy and phylogeny analysis show that they are new to science. Material and method The specimens were collected from Xizang which were deposited in the herbar- ium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. Samples were photographed when fresh in the field, and their habitats were recorded. Microscopic structures were discussed by Zhao et al. (2023). Special color terms were set by Anonymous (1969) and Petersen (1996). A Nikon Digital Sight DS-L3 or Leica ICC50 HD camera (magnification x1,000) was used to exam hand-cut sections of basidiomata, which were first treated with 5% KOH for a few minutes and then with 1% phloxine B (C,,H,Br,Cl,K,O.). At least 30 basidiospores of each species were examined. The values were expressed as a mean with 5% of the measurements excluded from each end of the range, given in parentheses. Stalks were excluded for basidia measure- ment, and the hilar appendages were excluded for basidiospore measurement. DNA extraction, amplification, and sequencing The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing) was used to obtain DNA from dried specimens and PCR was per- formed according to the manufacturer's instructions with some modifications (Yang et al. 2023). ITS were amplified using the primer pairs ITS5/ITS4 (White et al. 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 54 °C for 45s, and 72 °C for 1 min; and a final extension at 72 °C for 10 min. The PCR procedure for LSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 50 °C for 1 min, and 72 °C for 1.5 min; and a final extension at 72 °C for 10 min. All newly generated sequences were submitted to GenBank and are listed in Table 1. Sequences generated for this study were aligned, with additional sequences downloaded from GenBank. Sequences were aligned using MAFFT v.7 (https:// mafft.cbrc.jp/alignment/server/), adjusting the direction of nucleotide sequenc- es according to the first sequence (accurate enough for most cases), and select- ing the G-INS-i iterative refinement method (Katoh et al. 2019). Alignments were MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 203 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Table 1. Taxa information and the sequences used in this study. *Newly generated sequences for this study. Species Amyloathelia crassiuscula Amylocorticium cebennense Amylocorticium subincarnatum Amylocorticium subsulphureum Anomoporia bombycina Anomoporia vesiculosa Athelia abscondita Athelopsis subinconspicua Bondarzewia occidentalis Byssocorticium caeruleum Calocera bambusicola Calocera cornea Calocera cornea Calocera cornea Calocera cornea Calocera guepinioides Calocera guepinioides Calocera guepinioides Calocera guepinioides Calocera guepinioides Calocera guepinioides Calocera lutea Calocera lutea Calocera palmata Calocera palmata Calocera palmata Calocera ramaria Calocera sinensis Calocera sinensis Calocera sinensis Calocera sinensis Calocera tibetica Calocera tibetica Calocera viscosa S.lat. Calocera viscosa S.lat. Ceraceomyces americanus Ceraceomyces atlanticus Ceraceomyces atlanticus Ceraceomyces borealis Ceraceomyces eludens Ceraceomyces eludens Ceraceomyces eludens Ceraceomyces microsporus Ceraceomyces microsporus Ceraceomyces rhizomorphus Ceraceomyces rhizomorphus Ceraceomyces rhizomorphus Ceraceomyces rhizomorphus Ceraceomyces sublaevis Ceraceomyces tessulatus Ceraceomyces tessulatus Ceraceomyces yunnanensis Clavariadelphus amplus Coniophora marmorata Dacrymyces longistipitatus Dacrymyces pachysporus MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 Canada Canada China Sweden Unknown Sweden Canada New Zealand New Zealand New Zealand New Zealand New Zealand New Zealand New Zealand Brazil PDD 107969 LC131411 New Zealand PDD 107981 LC131412 URM 85888 M67 KHL 8432 JS 27108 JS 22780 United Kingdom DQ200923 NR_121454 FJ195751 MN595627 AY789083 MN595626 AB712437 LC131407 LC131409 LC131408 LC131410 LC131413 LC131414 fe LSU GU187561 AY586628 GU187562 GU187611 ON413720 OP902328 LR694174 DQ234539 MN595627 AY701526 MN595626 AB472738 LC131370 LC131371 LC131366 LC131368 LC131367 LC131369 LC131372 LC131373 LC131374 LET 1375 MH868295 PP862915 MW750403 MW750404 MN595628 DQ520102 KP135277 NG_060427 KX685874 PP862917 PP862916 GU187607 0Q147003 MK704448 GU187571 LC131386 LC131392 204 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Dacrymyces parastenosporus LC131394 Dacrymyces subalpinus AB299060 Dacryonaema macrosporum Norway MN595659 MN595659 Dacryonaema macrosporum Finland MN595660 MN595660 Dacryonaema rufum Sweden MN595645 MN595645 Dacryonaema rufum Sweden MN595646 MN595646 Dendrdacrys brasiliense Brazil AB744230 AB723514 Dendrdacrys dendrocalami Japan AB712453 AB712428 Fibulomyces mutabilis Germany GQ162817 = Ganoderma resinaceum Unknown KX371982 KX372027 Gautieria parksiana USA AF377059 = Gloeocantharellus neoechinosporus China MK358815 Go. ludovicianus USA KJ655580 Hypochniciellum subillaqueatum AY586679 Leptosporomyces linzhiensis PP862922 Leptosporomyces linzhiensis PP862918 Leptosporomyces linzhiensis CLZhao 31187 — Leptosporomyces raunkiaeri GU187588 Leptosporomyces septentrionalis LR694181 Phaeoclavulina flaccida MK796156 Plicaturopsis crispa Brazil NR_153926 NG_060427 Ramaria abietina KY510818 - KY354738 KY354711 NR_137862 NG_059504 EU837196 KP637036 Ramaria apiculata var. brunnea MH860840 MH872577 Ramaria araiospora Germany EU846298 = Ramaria botrytis var. aurantiiramosa = Ramaria acrisiccescens Ramaria admiratia USA USA USA Ramaria amyloidea USA USA MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 205 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Species Ramaria botrytis var. aurantiiramosa Ramaria celerivirescens Ramaria claviramulata Ramaria conjunctipes Ramaria coulterae Ramaria dendrophora Ramaria dendrophora Ramaria fennica Ramaria flavescens Ramaria flavescens Ramaria flava Ramaria flavinedulis Ramaria flavinedulis Ramaria flavobrunnescens var. aromatica Ramaria foetida Ramaria formosa Ramaria fumosiavellanea Ramaria gelatiniaurantia Ramaria inedulis Ramaria inedulis Ramaria largentii Ramaria luteovernalis Ramaria maculatipes Ramaria magnipes Ramaria myceliosa Ramaria obtusissima Ramaria patagonica Ramaria patagonica Ramaria pseudoflava Ramaria rasilisporoides Ramaria rasilisporoides Ramaria rubella Ramaria rubella f. rubella Ramaria rubribrunnescens Ramaria rubribrunnescens Ramaria sandaracina var. sandaracina Ramaria sp. Ramaria stricta Ramaria stricta var. concolor Ramaria stuntzii Ramaria subbotrytis Ramaria subtilis Ramaria suecica Ramaria testaceoflava Ramaria verlotensis Ramaria xizangensis Ramaria xizangensis Ramaria xizangensis Ramaria formosa Ramaricium polyporoideum Stereopsis vitellina Turbinellus floccosus Unilacryma unispora Unilacryma unispora Xenasmatella ardosiaca Xenasmatella ardosiaca MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 Argentina Argentina Argentina SA SA SA SA SA SA SA Chile Argentina U U U U U U Italy U Canada Germany Spain Spain USA USA USA USA USA USA Sweden USA Sweden Sweden Costa Rica USA GM 19056 GM 19035 AGK 059 AGK 058 vec ese UBC F28386 WTU-F-063047 MO 285170 UPS F 941268 UPS F 941277 KHL 12928 CBS 126045 OP177717 OP177720 JQ408240 JQ408239 EU525994 MK169345 KP658144 OP177723 OP177722 KP658130 NR_155720 KY354749 KY354750 KP454028 KT824242 MH856299 JQ408221 KP658122 AJ408361 AF 442098 KP658148 KP658128 KX574480 LR694211 MN319564 MN595672 MN595665 EU118658 MH864060 LSU JX269125 KX671009 EU669320 OP177880 OP177879 OP177881 OP177884 JQ408239 OP177887 OP177886 KP637058 KT357477 KY354721 MK493050 KJ655575 OP177874 OP177877 EU669343 EU652387 KY354722 KP637048 KP637079 AY586708 KX671016 PP862919 PP862920 PP862921 MT053203 MF992160 LR694189 MN319563 MN595672 MN593500 MH875515 206 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China manually adjusted to maximize alignment and minimize gaps with BioEdit v.7.0.9 (Hall 1999). A dataset of concatenated ITS and LSU sequences was used to de- termine the phylogenetic position of the new species. Maximum likelihood (ML) analysis was performed using the CIPRES Science Gateway (Miller et al. 2010) based on the dataset using the RA x ML-HPC BlackBox tool, with setting RA x ML halt bootstrapping automatically and 0.25 for maximum hours and obtaining the best tree using ML search. Other parameters in ML analysis used default settings, and statistical support values were obtained using nonparametric bootstrapping with 1,000 replicates. Bayesian inference (BI) analysis based on the dataset was performed using MrBayes v.3.2.6 (Ronquist and Huelsenbeck 2012). The best substitution model for the dataset was selected by ModelFinder (Kalyaanamoor- thy et al. 2017) using a Bayesian information criterion, and the model was used for Bayesian analysis. Four Markov chains were run from random starting trees. Trees were sampled every 1,000" generation. The first 25% of sampled trees were discarded as burn-in, whereas other trees were used to construct a 50% ma- jority consensus tree and for calculating Bayesian posterior probabilities (BPPs). The aligned sequences were deposited in TreeBase (https://www.treebase.org/ treebase-web/home.html; submission ID 31437). Branches of the consensus tree that received bootstrap support for ML were greater than or equal to 75%, Bayesian posterior probabilities more than 0.9, respectively. Result The Phylogeny of Calocera BI analysis yielded a similar topology to MP and ML analysis. Only the MP tree is provided here (Fig. 1). Branches that received bootstrap support for ML (ML-BS), and BI (BPP) greater than or equal to 75% (MP-BS and ML-BS) and 0.90 (BPP) were considered as significantly supported, respectively. The ITS and LSU dataset contains sequences from 26 fungal specimens represent- ing twelve Calocera taxa. The average SD of split frequencies in BI analyses is 0.005504 (BI). The phylogenetic tree (Fig. 1) reveals the new species has close relationship with C. tibatica, sister to C. viscosa and C. cornea. The Phylogeny of Ceraceomyces The dataset included ITS and LSU from 29 samples representing 22 taxa. The best model for the concatenated ITS+LSU dataset estimated and applied for BI analysis was “GTR+l+G4”, datatype = DNA, nucmodel = 4by4, Iset nst = 6, rates = invgamma; state frequencies had a Dirichlet prior (1,1,1,1), and the distribution was approximated using four categories. BI analysis yielded a similar topology to ML analysis, with an average standard deviation of split frequencies of 0.006593. The ML tree was provided (Fig. 2). Branches that received bootstrap support for ML and BI = 70%, and 0.75 were considered significantly supported, respectively. The analysis reveals four clades (Fig. 2), in which three European species C. eludens, C. microsporus, C. sublaevis clustered together and Rhizochaete americanus (Nakasone, C.R. Bergman & Burds.) Gresl., Nakasone & Ra- jchenb. The core clade formed by C. tessulatus and C. atlanticus, along with MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 207 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China o9-) MW549778 Calocera tibetica Dai 20178 96/0.99 1 MW549777 Calocera tibetica Dai 20171 79 PP399147 Calocera ramaria CLZhao 31166 i001 » DQ520102 Calocera viscosa AFTOL-ID 1679 MN595628 Calocera viscosa UPS F 940773 96-- MN595627 Calocera cornea UPS F 940775 83" | AY 789083 Calocera cornea AFTOL ID 438 0.93 | L198" IL MN595626 Calocera cornea UPS F 940774 AB712437 Calocera cornea CBS 124 84 100/1 LC131429 Dacrymyces pachysporus PDD 105004 LC131425 Dacrymyces longistipitatus PDD 107996 LC131431 Dacrymyces parastenosporus PDD 104960 MH856777 Calocera palmata CBS 127 51 va MN595676 Dacrymyces stillatus UPS F 939814 10.97 AB712465 Dacrymyces subalpinus TUFC 12834 0.94) 001 » LC131415 Calocera pedicellata PDD 107830 LC131416 Calocera pedicellata PDD 107925 90/0.99 AB744230 Dendrodacrys brasiliense INPA 241458 AB712453 Dendrodacrys dendrocalami TUFC 13914 io » LC131414 Calocera lutea PDD 107842 LC131413 Calocera lutea PDD 107841 1001) LC131408 Calocera cf guepinioides PDD 105033 LC131410 Calocera cf guepinioides PDD 107929 1001 | L.C131407 Calocera cf guepinioides PDD 105005 Fr LC131409 Calocera cf guepinioides PDD 107874 too) FJ195755 Calocera sinensis JCH 070726 io} FJ195754 Calocera sinensis Wu 0703-6 wd {1 ! FJ195753 Calocera sinensis Wu 0505-3 ~L MK167408 Calocera sinensis MHHNU 30743 10/1 toot - LC131411 Calocera cf guepinioides PDD 107969 LC131412 Calocera cf guepinioides PDD 107981 FJ195751 Calocera bambusicola Wu9910-12 99/1) MN595651 Dacryonaema macnabbii UPS F-940951 MN595650 Dacryonaema macnabbii UPS F-940949 00/0 9IN595646 Dacryonaema rufum UPS F-941005 MN595645 Dacryonaema rufum UPS F-941003 MN595660 Dacryonaema macrosporum UPS F-940998 MN595659 Dacryonaema macrosporum O 160045 MN595672 Unilacryma bispora UPS F-941268 100/1 AF377055 Ramaria botrytis EU525994 Ramaria formosa OSC 1064203 -/0.93 98/1 Al 99/1 A 100/0.99 0.2 Figure 1. Phylogeny of species in Calocera generated by maximum likelihood based on ITS+LSU sequence data. Branch- es are labeled with maximum likelihood bootstrap = 75% and Bayesian posterior probabilities > 0.90, respectively. New species are in bold. Hypochniciellum subillaqgueatum (Litsch.) Hjortstam. Four specimens from Chi- na formed two lineages, namely Ceraceomyces rhizomorphus with C. yunnan- ensis, and were sister to C. borealis. The Phylogeny of Leptosporomyces BI analysis yielded a similar topology to MP and ML analysis, with an average standard deviation of split frequencies = 0.008841. Only the MP tree is provided here (Fig. 3). Branches that received bootstrap support for ML (ML-BS), and BI (BPP) greater than or equal to 75% (MP-BS and ML-BS) and 0.90 (BPP) were con- sidered as significantly supported, respectively. Four previously accepted spe- cies, L. galzinii, L. fuscostratus (Julich) Krieglst., L. raunkiaeri, and L. mundus (H.S. Jacks. & Dearden) Julich received strong support in three lineages. The new spe- cies L. linzhiensis had a close relationship with L. septentrionalis with full support. MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 208 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China g6/| OR907143 Ceraceomyces eludens KM 194563 97/1 AF090877 Ceraceomyces eludens JS 22780 87/0.97 AF090879 Ceraceomyces eludens JS 27108 aie 1oo1 pt AFO90873 Ceraceomyces microsporus JS 27153 KP814418 Ceraceomyces microsporus UC 2023077 KP135029 Ceraceomyces sublaevis FP 101245 Sp KP135409 Rhizochaete americanus FP 102188 Al 95/1 EU118658 Xenasmatella ardosiaca KHL 12928 -/0.97 MH864060 Xenasmatella ardosiaca CBS 126045 EU118659 Phlebiella christiansenii KHL 11689 10.96 0Q371469 Xenasmatella bambusicola CLZhao 10985 EU118660 Phlebiella vaga KHL 11065 7719.96 PP399150 Ceraceomyces rhizomorphus CLZhao 31197 PP399148 Ceraceomyces rhizomorphus CLZhao 31161 0.91 PP399149 Ceraceomyces rhizomorphus CLZhao 31188 PP399151 Ceraceomyces rhizomorphus CLZhao 31154 EU118610 Ceraceomyces borealis KHL 8432 O0Q132519 Ceraceomyces yunnanensis CLZhao 18992 DQ144610 Amyloathelia crassiuscula GB/K 169-796 OR766067 Plicaturopsis crispa M 67 MZ159402 Hypochniciellum subillaqueatum KM 165142 AY463431 Hypochniciellum subillaqueatum KHL 8493 ON413718 Anomoporia vesiculosa Dai 22795 1001) KU518951 Ceraceomyces tessulatus KHL 16429 83/0.95 OR680647 Ceraceomyces tessulatus MPN 152885038 NR 153926 Ceraceomyces atlanticus URM 85888 100/11 KX685875 Ceraceomyces atlanticus URM 85888 1 00/1 GU187506 Amylocorticium subsulphureum HHB 13817 GU187505 Amylocorticium cebennense HHB 2808 96/- 92/1 -/I 100/1 0.05 Figure 2. Phylogeny of species in Ceraceomyces generated by maximum likelihood based on ITS+LSU sequence data. Branches are labeled with maximum likelihood bootstrap = 75% and Bayesian posterior probabilities = 0.90, respectively. New species are in bold. 0.99/98, KP814291 Leptosporomyces galzinii UC2023126 0.99/94) © 1.R694202 Leptosporomyces galzinii GB0O107211 GQ162814 Byssocorticium caeruleum RS 09400 KP814293 Leptosporomyces raunkiaeri UC2023053 »~ GU187528 Leptosporomyces raunkiaeri CFMR HHB 7628 LR694197 Athelopsis subinconspicua GB0058732 0.98/87 GU187535 Piloderma fallax CFMR:S-12 LR694211 Stereopsis vitellina F703241 vosp KP814350 Leptosporomyces fuscostratus UC2022884 0.96 0.98/86 qogiee OL436970 Leptosporomyces fuscostratus DK16 251 GQ162817 Fibulomyces mutabilis HG-B 5753 (GB) 0.28% OP877120 Athelia abscondita SG524 MT340827 Lobulicium occultum KHL13496b GU187515 Coniophora marmorata MUCL 31667 /79 DQ404393 Mythicomyces corneipes AFTOL-ID 972 LT716026 Lepiota cristata ZRL 20151133 GU187497 “Leptosporomyces septentrionalis” JS16122 0.99 | PP399152 Leptosporomyces linzhiensis CLZhao 31174 PP399155 Leptosporomyces linzhiensis CLZhao 31190 PP399153 Leptosporomyces linzhiensis CLZhao 31183 OES PP399154 Leptosporomyces linzhiensis CLZhao 31187 KP814348 Leptosporomyces septentrionalis UC2023047 LR694203 Leptosporomyces septentrionalis GB0090937 1/100 GU187505 Amylocorticium cebennense CFMR HHB:2808 GU187506 Amylocorticium subsulphureum CFMR HHB:13817 DQ200923 Bondarzewia occidentalis AFTOL-ID 452 0.04 Figure 3. Phylogeny of species in Leptosporomyces generated by maximum likelihood based on ITS+LSU sequence data. Branches are labeled with maximum likelihood bootstrap = 75% and Bayesian posterior probabilities = 0.90, respectively. New species are in bold. MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 209 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China The Phylogeny of Ramaria BI analysis yielded a similar topology to MP and ML analysis. Only the MP tree is provided here (Fig. 4). Branches that received bootstrap support for ML (ML-BS), and BI (BPP) greater than or equal to 75% (MP-BS and ML-BS) and 0.90 (BPP) were considered as significantly supported, respectively. Four clades were obtained from our phylogenetic analysis, Ramaria sub. Laeticolora, Ramaria Sub. Ramaria, Ramaria Sub. Echinormaria and Ramaria sub. Lentora- maria. The species Ramaria xizangensis was grouped in Ramaria sub. Laeti- colora along with R. amyloidea Marr & D.E. Stuntz, R. celerivescens Marr & D.E. Stuntz, and R. claviramulata Marr & D.E. Stuntz. EU652352 Ramaria rubribrunnescens OSC 119676 KY354750 Ramaria rubribrunnescens OSC 66051 KY354749 Ramaria maculatipes OSC 112051 KT824242 Ramaria sp. KD-14-006 KY354743 Ramaria conjunctipes var. sparsiramosa OSC 119883 KC346861 Ramaria conjunctipes OSC 110613 EU846298 Ramaria araiospora OSC 108707 AJ408361 Ramaria subbotrytis MA-Fungi 48088 PP399157 Ramaria xizangensis CLZhao 31180 PP399158 Ramaria xizangensis CLZhao 31204 PP399156 Ramaria xizangensis CLZhao 31169 KX574472 Ramaria claviramulata WTU-F-043055 b i JX310392 Ramaria celerivirescens OSC 140471 Ramaria sub. Laeticolora EU837196 Ramaria amyloidea OSC 69891 OP177710 Ramaria patagonica 403 OP177713 Ramaria patagonica GM 19106 KJ655570 Gomphus ludovicianus TFB 14476 AJ292292 Gomphus clavatus MA-Fungi 48085 MK682678 Ramaria fennica AMB n. 17522 MN319564 Turbinellus cf floccosus MO 285170 ay MK493036 Ramaria flavescens AMB 17404 MG760613 Ramaria rasilisporoides MH-2013 KP658122 Ramaria stuntzii OSC 73315 EU669320 Ramaria coulterae p649i MK169346 Ramaria rasilisporoides WTU-F-043029 MK493046 Ramaria pseudoflava AMB 17392 MK493035 Ramaria flava AMB 17393 KJ655554 Ramaria obtusissima TFB 14473 MK169351 Ramaria magnipes WTU-F-063057 JQ408240 Ramaria flavobrunnescens var. aromatica AGK 059 MT055910 Ramaria formosa AMB 18529 too f= JQ408221 Ramaria stricta var concolor AGK 011 MH856299 Ramaria stricta CBS:165.48 KP658148 Ramaria suecica OSC 115933 MK705858 Clavariadelphus sp HMAS 250466 -1 JQ408236 Ramaria rubella f rubella AGK 049 MH860840 Ramaria apiculata var brunnea CBS:149.74 KP658128 Ramaria testaceoflava OSC 107885 JQ408230 Phaeoclavulina myceliosa AGK 035 MK796107 Phaeoclavulina flaccida AMB n. 17671 KY510818 Phaeoclavulina abietina u066 KJ140634 Kavinia alboviridis CFPMR:DLL2011-131 KJ140598 Kavinia himantia CFMR:DLL2011-079 FJ596788 Lentaria byssiseda TENN61159 MF773634 Lentaria micheneri RRD6 TENN MF992160 Ramaricium polyporoideum TENN:065654 EU669317 Ramaria rubella OSC 115946 KY626144 Ramaria botrytis f. musicolor ZT Myc 57160 KY626151 Ramaria botrytis AMB n. 18201 OP177707 Ramaria botrytis GM 19044 JX310410 Ramaria botrytis var. aurantiiramosa OSC 140667 KX574471 Ramaria botrytis var. aurantiiramosa WTU-F-043053 AF377059 Gautieria parksiana SNF236USA MK 169345 Ramaria fumosiavellanea WTU-F-063048 KY354738 Ramaria acrisiccescens OSC 112057 MK358820 Gloeocantharellus neoechinosporus GDGM75321 KP658144 Ramaria gelatiniaurantia OSC 65737 KX574480 Ramaria verlotensis WTU-F-063047 NR 155720 Ramaria luteovernalis MCVE 28637 AF442098 Ramaria aff. subtilis MA 48055 NR 137862 Ramaria admiratia TENN 69114 OP177715 Ramaria dendrophora GM 19094 OP177716 Ramaria dendrophora GM 20020 MN637783 Ramaria aurea AMB 18352 JQ408239 Ramaria foetida AGK 058 EU837197 Ramaria aurantiisiccescens OSC 104868 KP658130 Ramaria largentii OSC 67012 KP454028 Ramaria sandaracina vat. sandaracina UBC F28386 OP177720 Ramaria flavinedulis GM 19035 OP177717 Ramaria flavinedulis GM 19056 100 OP177723 Ramaria inedulis 12648 OP177722 Ramaria inedulis GM 19047 MW683864 Lactarius sp PDD:113066 100/1 10/1 0.1 Figure 4. Phylogeny of species in the Ramaria generated by maximum likelihood based on ITS+LSU sequence data. Branches are labeled with maximum likelihood bootstrap = 75% and Bayesian posterior probabilities = 0.90, respectively. New species are in bold. MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 210 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Taxonomy Calocera ramaria C.L. Zhao & H.M. Zhou, sp. nov. MycoBank No: 852565 Figs 5, 6 Holotype. CHINA, Xizang, Linzhi, Sejila Mountain National Forest Park, 29°64'N, 94°71'E, elev. 3852 m, gregarious on humus under Abies, 2 August 2023, CLZ- hao 31166 (SWFC). Etymology. Ramaria (Lat.): refers to the ramal basidiomata of the specimens. Diagnosis. Differed from other species in having ramal basidiomata, septate hyphae, usually 4-septate basidiospores (9.2-11 x 3.9-4.4 um). Fruiting body. Basidiomata stipitate, gregarious, bright orange when fresh, orange brown when dry, gelatinous when soaked, corneous when dry, ramal, repeatedly branched, apically blunt, up to 6.2 cm high; stipe 0.7-1 mm in diam, become orange to reddish brown corneous when dry. Internal features. Marginal hyphae hyaline, smooth, thin-walled, septate, simple or branched, without clamp connections, 4-—5.5 um in diam; internal hyphae hyaline, smooth or scabrous, thin- to slightly thick-walled, interwo- ven, with nodose-septa, without clamp connections, 2-3 um in diam; hyphidia hyaline, smooth, thin-walled, with a simple septum at base, occasionally ter- minally branched; basidia hyaline, thin-walled, subclavate to clavate, without basal clamp connection, 23-31 x 2-4 um; basidiospores hyaline, smooth, thin-walled, oblong-ellipsoid to navicular, straight or curved, apiculate, usually 4-septate when mature, occasionally 5-septate, (9.1—)9.2-11(-11.6) x (3.5- )3.9-4.4(—4.7) um, L = 10.18 um, W = 4.19 um, Q = 2.43 (n = 30/1). Ceraceomyces rhizomorphus C.L. Zhao & H.M. Zhou, sp. nov. MycoBank No: 852584 Figs 7,8 Holotype. CHINA, Xizang, Linzhi, Sejilashan National Forest Park, 29°64'N, 94°71'E, elev. 3848 m, on the fallen branch of Abies, 2 August 2023, CLZhao 31188 (SWFC). Etymology. Rhizomorphus (Lat.): refers to the basidiomata with rhizomorphs. Diagnosis. Differed from other species in having merulioid, cream to yellow- ish basidiomata, generative hyphae with clamp connections, cylindrical basid- iospores (4.7—-6.2 x 1.8-2.3 um). Fruiting body. Basidiomata resupinate, adnate, smooth to tuberculate when fresh, merulioid upon drying, without odor or taste when fresh, up to 6 cm long, 2 cm wide, 100-200 um thick. Hymenial surface merulioid, cream to yellowish when fresh, turn to orange yellow upon drying. Margin sterile, white, with rhizomorphs. Hyphal structure. Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin- to slightly thick-walled, branched, interwoven, 3.5- 7 um in diameter, IKI-, CB-; tissues turn black in KOH. Hymenium. Cystidia and cystidioles absent; basidia narrowly clavate to clavate, in a dense palisade, with 4 sterigmata and a basal clamp connection, MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 211 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Figure 5. Basidiomata and microscopic structures of Calocera ramaria (holotype, CLZhao 31166, holotype) A, B basidioma- ta C a section of hymenium D basidiospores E marginal hyphae F internal hyphae. Scale bars: 1 cm (A, B); 10 um (C-F). 16-19 x 3.5-4 um; basidioles dominant, similar to basidia in shape, but slight- ly smaller. Spores. Basidiospores cylindrical, with suprahilar depression, colorless, smooth, thin-walled, IKI-, CB-, (4.2-)4.7-6.2(-6.4) x (1.5-)1.8-2.3(-—2.4) um, L = 5.49 um, W = 2.05 um, Q = 2.66-2.68 (n = 60/2). MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 112 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Figure 6. Microscopic structures of Calocera ramaria (holotype, CLZhao 31166) a basidiospores b basidia with basidio- spores. Scale bars: 5 um (a); 10 um (b). Additional specimens examined (paratypes). CHINA. Xizang, Linzhi, Sejila Mountain National Forest Park, 29°64'N, 94°71'E, elev. 3848 m, on the trunk of Abies, 2 August 2023, CLZhao 31153 (SWFC); CLZhao 31154 (SWFC); CLZhao 31161 (SWFC); CLZhao 31202 (SWFC); on the fallen branch of Ab- ies, 2 August 2023, CLZhao 31184 (SWFC); CLZhao 31185 (SWFC); CLZhao 31197 (SWEC). MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 213 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Figure 7. Basidiomata of Ceraceomyces rhizomorphus A, C CLZhao 31188 (holotype) B, D CLZhao 31185. NdND NDVO |¢A NO OV a b Cc Figure 8. Microscopic structures of Ceraceomyces rhizomorphus (holotype, CLZhao 31216) a basidiospores b basidia c basidioles d a section of hymenium. Scale bars: 5 um (a); 10 um (b-d). MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 14 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Figure 9. Basidiomata of Leptosporomyces linzhiensis (holotype, CLZhao 31183). Scale bars: 1 cm (A); 1 mm (B). Leptosporomyces linzhiensis C.L. Zhao & H.M. Zhou, sp. nov. MycoBank No: 852585 Figs 9, 10 Holotype. CHINA, Xizang, Linzhi, Sjilashan Forest Park, 29°64'N, 94°71'E, elev. 3848 m, on fallen trunk of Abies, 2 August 2023, CLZhao 31183 (SWFC). Etymology. Linzhiensis (Lat.): refers to the locality (Xizang) of the type spec- imens. Diagnosis. Differed from other species in having white basidiomata, monomitic hyphal system, cylindrical to oblong ellipsoid basidiospores (3.8—4. x 1.7-2 um). Fruiting body. Basidiomata resupinate, athelioid, membranous upon drying, without odor or taste when fresh, up to 10 cm long, 4 cm wide, 200 um thick. Hymenial surface smooth to cracked, white with pink tint when fresh, turning to yellowish cream upon drying. Margin sterile, white, fimbriate. Hyphal structure. Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin- to slightly thick-walled, branched, interwoven, 2-5 um in diameter, IKI-, CB-; tissues turn black in KOH. Hymenium. Hyphal system monomitic, generative hyphae with clamp con- nections, colorless, thin-walled, branched, interwoven, 2-3.5 um in diameter, IKI-, CB-. Basidia clavate, with 4 sterigmata and a basal clamp connection, 1I5=135:%3:-2=3:8 pm: Spores. Basidiospores cylindrical to oblong ellipsoid, colorless, smooth, thin- walled, IKI-, CB-, (3.5-)3.8-4.3(-4.7) x (1.7-)1.7-2(-2.3) um, L = 4.02 um, W = 1.88 um, Q = 1.95-2.18 (n = 90/3). Additional specimens examined (paratypes). CHINA, Xizang, Linzhi, Sjilas- han Forest Park, 22°57'N, 103°42'E, elev. 2100 m, on fallen trunk of Abies, 2 August 2023, CLZhao 31174 (SWFC); on fallen trunk of Abies, 2 August 2023, CLZhao 31187 (SWFC); on fallen trunk of Abies, 2 August 2023, CLZhao 31190 (SWFC). . | “hee Wt > Ae fh } ae: ng ie 7S ne MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 215 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China MOE Ee. ao Va a ee Figure 10. Microscopic structures of Leptosporomyces linzhiensis (holotype, CLZhao 31183) a basidiospores b basidia c basidioles d A section of hymenium. Scale bars: 5 um (a); 10 um (b-d). Ramaria xizangensis C.L. Zhao & H.M. Zhou, sp. nov. MycoBank No: 852586 Figs 11,12 Holotype. CHINA, Xizang, Linzhi, Sejila Mountain National Forest Park, 29°64'N, 94°71'E, elev. 3850 m, gregarious on the humus under Abies, 2 August 2023, CLZhao 31169 (SWFC). Mycokeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 216 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Etymology. Xizangensis (Lat.): refers to the locality (Xizang) of the type spec- imens. Diagnosis. Differed from other species in having flesh pink basidiomata, mo- nomitic hyphal system, generative hyphae with clamp connections, ellipsoid to cylindrical, densely warted basidiospores (9.7-11.8 x 3.9-4.9 um). Fruiting body. Basidiomata solitary to gregarious, with 8 cm high x 6 cm wide at the widest point, repeat branched dichotomously in 4-5 ranks, flesh pink when fresh, become clay buff with dry; apices obtuse, orange yellow when fresh, becoming fuscous when dry. Stipe = 3 cm high, compound to fasciculate in groups of 5, emerging from a common base, concolorous with the branches. Hyphal structure. Hyphal system monomitic, generative hyphae with clamp connections, branched, walls smooth and hyaline; basal stem with tramal hyphae 4-7 um wide and inflated ones up to 10 um, occasionally branched, thin-walled, parallel arranged, hyaline; tramal hyphae of branches 3-4 um wide. Hymenium. Hymenium all along the basidiomata. Basidia clavate, ina dense palisade, with 4 sterigmata and a basal clamp connection. Basidioles elongat- ed clavate, smooth, hyaline, contents homogeneous, 23.5-34 x 6-7 um. Spores. Basidiospores ellipsoid to cylindrical, densely warted, with 1-2 sever- al guttulae, IKI-, CB—, 9.7-11.8(-—12.5) x (3.8-)3.9-4.9(-—5.1) um, L = 10.69 um, W = 4.29 um, Q = 2.49 (n = 30/1). Additional specimens examined (paratypes). CHINA, Xizang, Linzhi, Sejila Mountain National Forest Park, 29°67'N, 94°74'E, elev. 3850 m, gregarious on the humus under Abies, 2 August 2023, CLZhao 31180 (SWFC); on ground in forest of Abies, 2 August 2023, CLZhao 31204 (SWFC). t, re pail a, | Ai “yk ' aia Figure 11. Basidiomata of Ramaria xizangensis (holotype, CLZhao 31169). Scale bars: 1 cm (A, B). MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 217 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Figure 12. Microscopic structures of Ramaria xizangensis (CLZhao 31169, holotype) a basidiospores b basidia ¢ a sec- tion of hymenium. Scale bars: 5 um (a); 10 um (b, c). Discussion Wood decay fungi encompasses the vast group of aphyllophoroid fungi with corticioid, prioid or jelly form of basidiomata (Herter 1910). This classification has historically been used to define the different families of Basidiomycetes. However, molecular studies have revealed that many of these fungi are dis- tributed across various orders within the Basidiomycetes, including the likes MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 218 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China of Amylocorticiales, Atheliales, Dacrymycetales, and Gomphales (Kirk et al. 2018; Wei et al. 2022). As a result, further research is needed to elucidate the relationships and morphological variability of these taxa through phylogenet- ic analysis. The Xizang Autonomous Region, situated in the southwest of China, is re- nowned as one of the most bio-diverse regions in the country. This is attributed to its complex topography and diverse ecosystems, making it a focal point for fungal biodiversity in China. Recently, studies focusing on fungal diversity and the ecology of Basidiomycota in Xizang were carried out (Ke 2016; Pubu et al. 2016; Wang et al. 2023). According to the study (Pubu et al. 2016), 1733 spe- cies were collected in Xizang. The fungal research indicated that Sejila Moun- tain National Forest Park is predominantly composed of spruce and fir trees, which provide an ideal habitat for a rich diversity of macrofungi species to flourish (Zhao and Li 1987). In our study, four species were found from Xizang, Calocera ramaria, Ceraceomyces rhizomorphus, Leptosporomyces linzhiensis, and Ramaria xizangensis. Calocera is characterized by its yellow, gelatinous basidiomata, resembling Dacrymyces. However, Dacrymyces displays a broader range of basidiomata forms, including pulvinate, discoid, turbinate, spathulate, flabellate, and cylin- drical shapes (Shirouzu et al. 2009; Fan et al. 2021), whereas Calocera exhibits branched, dendroid basidiomata. Our results have further confirmed that our newly discovered species features ramal basidiomata and clusters phylogenet- ically with Calocera species, placing it within the genus Calocera. In Xizang, two species have been identified, C. ramaria and C. tibetica, but the latter has wider basidiospores (5-6 um vs. 3.9-4.4 um, Fan et al. 2021). In our phylogenies, C. viscosa and C. cornea were related to C. ramaria (Fig. 1); however, C. viscosa has 1-septate mature basidiospores, and C. cornea differs from C. ramaria by its distinctly larger basidiospores (7-10 x 3-4.5 um vs. 9.2-11 x 3.9-4.4 pm) with one septum (McNabb 1965; Shirouzu et al. 2009). Previous research has highlighted the polyphyly of Ceraceomyces (Chikow- ski 2016; Yuan et al. 2023), and seven species are retained in Ceraceomyces. However, it is worth noting that authentic specimens and DNA data are lacking for Ceraceomyces species. Phylogenetically, C. rhizomorphus formed a sister group with C. yunnanensis and C. borealis, but C. yunnanensis has smaller ba- sidiospores (3-4 x 1-1.5 um vs. 4.7-6.2 x 1.8-2.3 um, Yuan et al. 2023) and C. borealis has larger basidiospores (6-8 x 1.8-2 um vs. 4.7-6.2 x 1.8-2.3 um, Bernicchia and Gorjon 2010). Ceraceomyces rhizomorphus and C. tessulatus had similar yellowish ba- sidiomata with rhizomorphs when fresh, while C. tessulatus has ellipsoid and larger basidiospores (6-8 x 3.5-4.5 um vs. 4.7-6.2 x 1.8-2.3 um, Bernicchia and Gorjon 2010). Three known species, C. bizonatus, C. reidii, and C. simulans also distributed in Asia. However, C. bizonatus has shorter basidiospores (2.5— 3.3 um vs. 4.7-6.2 um, Bernicchia and Gorjé6n 2010); C. reidii has larger basidio- spores (11.5-15 x 4.5-6 um vs. 4.7-6.2 x 1.8-2.3 um, Bernicchia and Gorjon 2010); C. simulans has longer basidiospores (6-7 um vs. 4.7-6.2 um, Bernicchia and Gorjon 2010). Leptosporomyces linzhiensis is similar to L. thindii in having white basidioma- ta and being distributed in Asia, but the latter has wider basidiospores (Prasher 2015). Leptosporomyces linzhiensis sisters to L. septentrionalis by its white ba- Mycokeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 219 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China sidiomata, and cylindrical basidiospores, but the latter has slightly shorter basid- iospores (3-4 um vs. 3.8-4.3 um), and 2-4 basidia (Prasher 2015). Leptosporo- myces linzhiensis is easily confused with L. roseus in, but the latter has shorter basidiospores (2-—2.5 um vs. 3.8-4.3 um, Prasher 2015). Leptosporomyces fus- costratus has a broad distributional range in the northern hemisphere, but it has wider basidiospores (2—2.8 um vs. 1.7-2 um, Yurchenko and Wotkowycki 2022). In our phylogeny, Ramaria is paraphyletic, which included four clades, R. sub. Laeticolora and R. sub. Lentoramaria, R. sub. Ramaria and R. sub. Echinormaria. Ramaria xizangensis was clustered in Ramaria sub. Laeticolora with Ramaria amyloidea, R. celerivirescens and R. claviramulata. However, R. celerivirescens has slightly wider basidiospores (4-6 um vs. 3.9-4.9 um, Marr and Stuntz 1973). R. claviramulata has cream to brownish white basidiomata. Ramaria xi- zangensis is similar to R. indoyunnaniana in having pink basidiomata and being distributed in Yunnan, but the latter has shorter basidiospores (7.2—8.3 um vs. 9.7-11.8 um, Petersen and Zang 1986). According to our field inventory, the four Chinese new species were found in alpine zone near the Sejila Mountain, and the coniferous forest dominant by Abies at high altitude with cold and humid environments. Previously, numerous new species have been found in Southwest China (Dai 2022; Zhao et al. 2023), and the present paper confirms the fungal diversity is very rich in the montane forests of Southeast Xizang. Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding The research was supported by the National Natural Science Foundation of China (Project No. 32170004); the Highlevel Talents Program of Yunnan Province (YNQR-QNRC-2018-111); the Scientific Research Fund of Yunnan Provincial Department of Education (2024J0668); Forestry Innovation Programs of Southwest Forestry University (Grant No: LXXK-2023M07). Author contributions Data curation: ZHM, ZCL,WF. Formal analysis: ZXC. Methodology: ZHM, ZXC, LUT. Soft- ware: ZXC, LJT. Writing - original draft: ZHM, ZCL. Writing - review and editing: ZCL, WF. Author ORCIDs Hong-Min Zhou ® https://orcid.org/0000-0002-0724-5815 Xun-Chi Zhang ® https://orcid.org/0000-0003-3887-0979 Fang Wu ® https://orcid.org/0000-0002-1455-6486 Chang-Lin Zhao ® https://orcid.org/0000-0002-8668-1075 Data availability All of the data that support the findings of this study are available in the main text. MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 220 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China References Anonymous (1969) Flora of British Fungi. Colour Identification Chart. Her Majesty’s Sta- tionery Office, London. Bao Y (2020) Mycoflora Biodiversity and Genetic Variation of Macrofungi in Alpine Meadow of Tibet. Northeast Normal University. Bernicchia A, Gorjon SP (2010) Fungi Europaei 12. Corticiaceae s.|. Edizioni Candusso, Alassio, Italy, 1008 pp. Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by cortici- oid forms. Mycologia 102(4): 865-880. https://doi.org/10.3852/09-288 Chikowski R, Larsson KH, Gibertoni TB (2016) Ceraceomyces atlanticus (Amylocorticia- les, Basidiomycota), a new species from the Atlantic Rain Forest, Brazil. Phytotaxa 296(1): 73-80. https://doi.org/10.11646/phytotaxa.296.1.5 Coker WC (1923) The Clavarias of the United States and Canada. Chapel Hill, 209 pp. Corner EJH (1950) A monograph of Clavaria and allied genera. Annals of Botany Mem- oirs 1: 1-740. Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, tax- onomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137-392. https://doi.org/10.1007/s13225-019-00427-4 Doty MS (1944) Clavaria, the species known from Oregon and the Pacific Northwest. El-Gharabawy HM, Leal-Dutra CA, Griffith GW (2021) Crystallicutis gen. nov. (Irpicaceae, Basidiomycota), including C. damiettensis sp. nov., found on Phoenix dactylifera (date palm) trunks in the Nile Delta of Egypt. Fungal Biology 125(6): 447-458. https://doi. org/10.1016/j.funbio.2021.01.004 Exeter RL, Norvell L, Cazares E (2006) Ramaria of the Pacific Northwestern United States. United States Department of Interior, Bureau of Land Management. Salem, Oregon USA, 156 pp. Fan LF, Wu YD, Wu F, Dai YC (2021) Calocera tibetica sp. nov. (Dacrymycetaceae, Da- crymycetales) from southwestern China. Phytotaxa 500: 133-141. https://doi. org/10.11646/phytotaxa.500.2.6 Fisher MC (1931) A comparative morphological study of certain species of the Dacryo- mycetaceae. The Proceedings 38(1): 115-125. Gaumann EA (1953) The Fungi: a description of their morphological features and evo- lutionary development, (Translated by Wynd FL). Hafner Publishing, New York and London, 420 pp. Giachini AJ, Hosaka K, Nouhra E, Spatafora J, Trappe JM (2010) Phylogenetic relation- ships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences. Fungal Biology 114(2—3): 224-234. https://doi.org/10.1016/j. funbio.2010.01.002 Hall TA (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. Hanif M, Khalid AN, Exeter RL (2019) Ramaria flavescentoides sp. nov. with clamped basidia from Pakistan. Mycotaxon 134: 399-406. https://doi.org/10.5248/134.399 Herter WGF (1910) Autobasidiomycetes. Kryptogamen-Flora der Mark Brandenburg 6: 192: Hodkinson BP. Moncada B, Licking R (2014) Lepidostromatales, a new order of liche- nized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sul- MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 271 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China zbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Diversity 64(1): 165-179. https://doi.org/10.1007/s13225-013-0267-0 Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W III, Dominguez LS, Trappe JM (2006) Molecular phylogenetics of the gomphoidphalloid fungi with an establish- ment of the new subclass Phallomycetidae and two new orders. Mycologia 98(6): 949-959. https://doi.org/10.1080/15572536.2006.11832624 Humpert AJ, Muench EL, Giachini AJ, Castellano MA, Spatafora JW (2001) Molecular phylogenetics of Ramaria and related genera: evidence from nuclear large subunit and mitochondrial small subunit rDNA sequences. Mycologia 93: 465-477. https:// doi.org/10.2307/3761733 Julich W (1972) Monographie der Athelieae (Corticiaceae, Basidiomycetes). Willdeno- wia Beiheft 7: 1-283. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFind- er: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587-589. https://doi.org/10.1038/nmeth.4285 Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. https://doi.org/10.1093/bib/bbx108 Ke ZD (2016) Studies on macrofungi diversity in Shergyla Mountain National Nature Reserve in Tibet. Jilin Agricultural University. Kirk PM, Ainsworth GC, Cannon PF, Minter DW (2008) Ainsworth and Bisby’s dictionary of fungi, 10 edn. CAB International, UK. https://doi.org/10.1079/9780851998268.0000 Knudson AG (2012) The genus Ramaria in Minnesota. Master of Science thesis, Univer- sity of Minnesota. Larsson KH (2007) Re-thinking the classification of corticioid fungi. Mycological Re- search 111(9): 1040-1063. https://doi.org/10.1016/j.mycres.2007.08.001 Larsson KH, Larsson E, K6ljalg U (2004) High phylogenetic diversity among corti- coid homobasidiomycetes. Mycological Research 108(9): 983-1002. https://doi. org/10.1017/S0953756204000851 Liu S, Chen YY, Sun YF, He XL, Song CG, Si J, Liu DM, Gates G, Cui BK (2023) System- atic classification and phylogenetic relationships of the brown-rot fungi within the Polyporales. Fungal Diversity 118(1): 1-94. https://doi.org/10.1007/s13225-022- 00511-2 Lowy B (1971) Tremellales. Flora Neotropica 6(8): 1-153. Marr CD, Stuntz DE (1973) Ramaria of Western Washington. Bibliotheca Mycologica, Germany, 38 pp. Martin GW (1948) New of noteworthy tropical fungi. IV. Lloydia 11(2): 111-122. McNabb RFR (1965) Taxonomic studies in the Dacrymycetaceae 2. Calocera (Fries) Fries. New Zealand Journal of Botany 3: 31-58. https://doi.org/10.1080/002882 5X.1965.10428712 Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for in- ference of large phylogenetic trees. In Proceedings of the Gateway Computing Envi- ronments Workshop, New Orleans, 8 pp. https://doi.org/10.1109/GCE.2010.5676129 Nees Esenbeck, CDG (1817) System der Pilze und Schwamme, 334 pp. Peng YB, Liu B, Li F (1992) Flora Fungorum Sinicorum Vol. 2. Tremellales et Dacrymy- cetales. Science Press, Beijing, 151 pp. Petersen JH (1996) Farvekort. The Danish Mycological Society's colour-chart. Forenin- gen til Svampekundskabens Fremme, Greve, 6 pp. MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 299 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Petersen RH (1981) Ramaria subgenus Echinoramaria. Bibliotheca Mycologia 261 pp. Petersen RH, Zang M (1986) New or interesting clavarioid fungi from Yunnan, China. Plant Diversity 8(3): 281-294. Prasher IB (2015) Wood-rotting non-gilled Agaricomycetes of Himalayas. Fungal Diver- sity Research Series, Chiang Rai, 653 pp. https://doi.org/10.1007/978-94-01 7-9858-7 Pubu CR, Wang M, Liu XY (2016) A review of investigation of fungi in Tibet. Mycosyste- ma 35(9): 1025-1047. https://doi.org/10.13346/j.mycosystema.150158 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572-1574. https://doi.org/10.1093/bioinfor- matics/btg180 Ryvarden L, Gilbertson RL (1993) European polypores. Part 1. Synopsis Fungorum 6: 1-387. Shirouzu T, Hirose D, Tokumasu S (2007) Sequence analyses of the 28S rRNA gene D1/ D2 region suggest Dacrymyces (Heterobasidiomycetes, Dacrymycetales) is polyphy- letic. Mycoscience 48(6): 388-394. https://doi.org/10.1007/S10267-007-0378-0 Shirouzu T, Hirose D, Tokumasu S (2009) Taxonomic study of the Japanese Dacrymy- cetes. Persoonia 23(1): 16-34. https://doi.org/10.3767/003158509X468443 Shirouzu T, Hosaka K, Nam KO, Weir BS, Johnston PR, Hosoya T (2017) Phylogenetic relationships of eight new Dacrymycetes collected from New Zealand. Persoonia 38(1): 156-169. https://doi.org/10.3767/003158517X695280 Sulistyo BP Larsson KH, Haelewaters D, Ryberg M (2021) Multigene phylogeny and taxo- nomic revision of Atheliales s.|.: Reinstatement of three families and one new family, Lobuliciaceae fam. nov. Fungal Biology 125(3): 239-255. https://doi.org/10.1016/j. funbio.2020.11.007 Wang SH, Li GJ, Phurbu D, He MQ, Zhang MZ, Zhu XY, Li JX, Zhao RL, Cao B (2023) Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 15(2): 1-28. https://doi.org/10.1080/21501203.2023.2265667 Wei CL, Chen CC, He SH, Wu SH (2022) Dendrocorticiopsis orientalis gen. et sp. nov. of the Punctulariaceae (Corticiales, Basidiomycota) revealed by molecular data. My- coKeys 90: 19-30. https://doi.org/10.3897/mycokeys.90.84562 White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: MA, Gefand DH, Sninsky JJ, White MJT (Eds) PCR Protocols: a guide to methods and applications; Academic Press, San Di- ego, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Ste- phenson SL, Ertz D, et al. (2020) Outline of fungi and fungus-like taxa. Mycosphere 11(1): 1160-1456. https://doi.org/10.5943/mycosphere/11/1/8 Wu SH, Shih K, Yu SY (2011) Calocera bambusicola sp. nov. and C. sinensis newly re- corded from Taiwan. Mycotaxon 115(1): 163-169. https://doi.org/10.5248/115.163 Yang Y, Jiang Q, Li Q, Yang J, Cha L, Cheng L, Yang S, Zhao C, Zhou H (2023) Molecular systematics and taxonomic analyses of three new wood-inhabiting fungi of Hypho- derma (Hyphodermataceae, Basidiomycota). Journal of Fungi 9(11): 1044. https:// doi.org/10.3390/jof9111044 Yuan Q, Luo KY, Zhang Y, Zhao CL (2023) Morphological characteristics and phyloge- netic analyses revealed three new wood-inhabiting fungi (Agaricomycetes, Basidio- mycota) in Southern China. Phytotaxa 592(3): 179-195. https://doi.org/10.11646/ phytotaxa.592.3.1 MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 293 Hong-Min Zhou et al.: Four new wood inhabiting fungi in Xizang, China Yurchenko K, Wotkowycki M (2022) New species of corticioid fungi (Basidiomycota) for Poland found in Biatowieza Primeval Forest in 2018-2020. Acta Mycologica 58: 1-18. https://doi.org/10.5586/am.577 Zamora JC, Ekman S (2020) Phylogeny and character evolution in the Dacrymycetes, and systematics of Unilacrymaceae and Dacryonaemataceae fam. nov. Persoonia 44(1): 161-205. https://doi.org/10.3767/persoonia.2020.44.07 Zhao LF, Li XG (1987) Partial fungal list of Nyingchi region, Milin, Tibet. Journal of South- west Forestry College 7(1): 55-58. [Natural Science] Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023) Multi-gene phylogeny and taxono- my of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomyco- ta). Journal of Fungi 320(9): 1-41. https://doi.org/10.3390/jof9030320 MycoKeys 106: 201-224 (2024), DOI: 10.3897/mycokeys.106.125831 294