683 MycoKeys MycoKeys 112: 233-252 (2025) DOI: 10.3897/mycokeys.112.135493 Research Article Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Kunmin Yu™®, Hong Zhang'?®, Kexin Cheng™, Yulan Jiang'® 1 Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025, China 2 Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, China Corresponding author: Yulan Jiang (ylichsd@163.com) This article is part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam OPEN Qrceess Academic editor: Danushka Sandaruwan Tennakoon Received: 26 August 2024 Accepted: 2 December 2024 Published: 20 January 2025 Citation: Yu K, Zhang H, Cheng K, Jiang Y (2025) Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China. MycoKeys 112: 233-252. https://doi. org/10.3897/mycokeys.112.135493 Copyright: © Kunmin Yu et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract China is located in eastern Asia and has a large quantity and rich variety of bamboo resources. Bamboo resources also contain various fungal species such as Apiospora. The genus Apiospora is commonly used as plant pathogens, endophytes, and sapro- phytes, which are widely present in various host ranges around the world. The discovery of metabolites has been proven to play an important role in the pharmaceutical industry. Recently, 10 strains were isolated from bamboo in Guizhou Province, China, which were identified as five species of Apiospora based on multigene phylogenetic analysis of ITS, LSU, TEF1-a, and TUB2, and morphological observations, including two recognized spe- cies, Ap. arundinis and Ap. lophatheri, and three novel species, viz. Ap. bambusicaulis, Ap. bambusirimae, and Ap. bambusilentiginis. \llustrations and descriptions of these taxa are provided. Key words: Ascomycota, fungal taxonomy, morphology, novel species, phylogeny Introduction The Apiospora is a large genus of the family Apiosporaceae (Amphisphaeriales, Sordariomycetes, Ascomycota) (Hyde et al. 2020; Pintos and Alvarado 2021), with diverse species worldwide, in various climates, primarily in temperate and tropical regions. These fungi have been found in different substrates, includ- ing plants, air, soil, freshwater, lichens, marine environments, insect intestines, and human tissues (Tian et al. 2021). Most Apiospora species are found as saprophytes and endophytes of many plant hosts; several species have been reported as important plant pathogens (Wang et al. 2018; Kwon et al. 2022), such as Ap. kogelbergense and Ap. sacchari that cause Bambusa intermedia and Triticum durum wilt disease and Ap. xencodella that causes Pistacia vera fruit wilt disease (Mavragani et al. 2007; Aiello et al. 2018; Yin et al. 2021). Additionally, some Apiospora species have been sources of bioactive com- pounds, industrial enzymes, and antifungal agents, with enormous commercial potential in the pharmaceutical industry (Shrestha et al. 2015; Heo et al. 2018). * These authors contributed equally to this work. 233 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Apiospora was introduced by Saccardo (1875) with Ap. montagnei as the type species. The multi-locular perithecial stromata with hyaline ascospores surrounded by a thick gelatinous sheath is the characteristic of sexual morphs of Apiospora. (Dai et al. 2017; Pintos and Alvarado 2021). Apiospora was treat- ed as the sexual morph of Arthrinium for years because of their similar asex- ual morphological characters, especially their same basauxic conidiogenesis (von Hohnel 1919; Petrak 1925; Hudson 1960, 1963; Ellis 1965; Samuels et al. 1981). Hyde et al. (1998) established the family Apiosporaceae to accommo- date genera with basauxic conidiogenesis, and Apiospora was placed inside. Subsequently, Arthrinium and Apiospora were formally synonymized based on phylogenetic analyses of ITS, TEF7-a, and TUB2 sequence data by Crous and Groenewald in 2013, and they emphasized that most species of Arthrinium (= Apiospora) recorded in the Poaceae hosts and some were collected from the Cyperaceae and Juncaceae hosts. Later, Wang et al. (2018) observed two spe- cies, Ar. japonicum and Ar. puccinioides, occurring on Carex spp. of the Cyper- aceae, and Pintos et al. (2019) published the genetic data of Ar. cariciola (the type species of Arthrinium), Ar. curvatum, and Ar. sporophleum found in Carex and Juncus of the Juncaceae, and these samples also formed an independent clade, obviously unrelated with other data of Arthrinium (= Apiospora). In addi- tion, these authors found that the data from Cyperaceae and Juncaceae mainly occurred in temperate, cold, or alpine regions, and these species often produce rounded, fusoid, navicular, polygonal, or curved conidia, while other data of Arthrinium (= Apiospora) mainly occur in the Poaceae family in a wide range of habitats, including tropical and subtropical regions (there are also other plants), and they have rounded, lenticular conidia (Hudson 1976; Pintos et al. 2019; Pintos and Alvarado 2021). On these foundations, Pintos and Alvarado (2021) selected the type strain Ap. montagnei and separated Apiospora and Arthrinium as two distinct genera according to ITS, LSU, TEF1-a, and TUB2 sequence data. The third group of species previously classified as Arthrinium, including Ar. ur- tiaca M.B. Ellis (1965) and Ar. trachycarpi C.M. Tian & H. Yan (Yan et al. 2024), were likely not related to Apiospora or Arthrinium (Tang et al. 2021), and there- fore Jiang et al. (2022) proposed the new Arthrinium-like genus Neoarthrinium in Amphisphaeriales to accommodate them. It is extremely difficult to distinguish asexual morphs of these three gen- era based on morphological characters alone. Therefore, molecular phyloge- netic information is very important to accurately distinguish them (Pintos and Alvarado 2021; Jiang et al. 2022). In this study, ten strains were collected from bamboo in Guizhou Province, China, which were identified as two known spe- cies and three new species based on morphological characteristics and multi- gene phylogenetic analysis. Materials and methods Sample collection and fungal isolation Diseased bamboo branches were observed and collected from Huaxi District, Guiyang City, Guizhou Province, China. The samples were placed in clean plas- tic bags and transported to the laboratory for isolation. These strains were iso- lated and purified using the method proposed by Xie et al. (2024) to obtain pure MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 234 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China colonies. The re-isolated and purified fungi were placed on potato glucose agar (PDA) plates and incubated for 5-10 days at 25 °C in the dark. The holotype and ex-type cultures are deposited in the Culture Collection of the Department of Plant Pathology, Agriculture College, Guizhou University, China (GUCC). Morphological examination Morphological characteristics were based on fertile cultures grown on PDA in a constant temperature incubator at 25 °C. Colony diameter and characteris- tics were recorded after 5-7 days. Colony colors (surface and reverse) were recorded using the color charts of Rayner (1970). Morphological descriptions were based on cultures sporulating on water agar (WA) and using 15-30% lactic acid on a glass slide. The size of the conidia and conidiogenous cells was shown as minimum-maximum. Following spore production, observations were made with a Zeiss Axioscope compound microscope equipped with dif- ferential interference contrast (DIC). Morphological indicators of 30 conidiog- enous cells and conidia were measured using Image Frame Work (IFW) soft- ware. The taxonomic information of the new taxa was deposited in MycoBank (http://www.mycobank.org). DNA extraction and PCR amplification Total genomic DNA was extracted from mature mycelium grown on PDA using the BIOMIGA Fungus Genomic DNA Extraction Kit GD2416 (Biomiga, CA, USA), performed following the manufacturer's protocol. The DNA was amplified and sequenced by polymerase chain reaction (PCR). DNA sequences of four differ- ent loci were obtained, including the nrDNA internal transcribed spacer regions 1 and 2 with the intervening 5.8S subunit (ITS), a partial sequence of the large subunit nrDNA subunit (LSU), a partial sequence of the translation elongation factor 1-alpha gene (TEF1-a), and a partial sequence of the beta-tubulin gene (TUB2). They were all amplified with the primer pairs and PCR program listed in Table 1. The amplified PCR products were sent to a commercial sequencing provider (Sangon Biotech, Shanghai, China) Co., Ltd. for DNA sequencing. Phylogenetic analysis The quality of the chromatograms was verified, and nucleotide sequences were assembled using SeqMan v.7.1.0. Reference sequences were obtained from previous studies (Samarakoon et al. 2022; Liu et al. 2023) and retrieved from the National Center for Biotechnology Information. The sequences were aligned using MAFFT on the web portal (Katoh et al. 2019). The sequence Table 1. Gene regions and respective primer pairs used in the study. Locus ITS LSU TEF1-a TUB2 PCR primers ITSS/ITS4 LROR/LRS EF1-728F/EF2 Bt-2a/Bt-2b PCR: thermal cycles: (Annealing temperature in bold) Reference (94 °C: 30 s, 55 °C: 30s, 72 °C: 45s) x 29 cycles White et al. 1990 (94 °C: 30 s, 48 °C: 50 s, 72 °C: 1 min 30 s) x 35 cycles Vilgalys and Hester 1990; Cubeta et al. 1991 (95 °C: 30s, 51 °C: 30s, 72 °C: 1 min) x 35 cycles O'Donnell et al. 1998; Carbone and Kohn 1999 (95 °C: 30 s, 56 °C: 30 s, 72 °C: 1 min) x 35 cycles Glass and Donaldson 1995 MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 235 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China ends were trimmed manually to remove low-quality bases using BioEdit 7.1.3.0 (Katoh et al. 2019) and assembled using MEGA X (Kumar et al. 2018). Multi- gene phylogenetic analyses based on the combined ITS, LSU, TEF1-a, and TUB2 were carried out to clarify the phylogenetic relationships of Apiospora species using the maximum likelihood (ML) and Bayesian inference (BI) analyses. The ML was implemented on the CIPRES Science Gateway portal (https://www. phylo.org) using RAXxML-HPC BlackBox 8.2.10 (Stamatakis 2014), employing a GTRGAMMA substitution model with 1000 bootstrap replicates. The Bayesian posterior probabilities (BPP) were determined by Markov Chain Monte Carlo (MCMC) sampling in MrBayes v.3.2.6 (Ronquist et al. 2012). The six simultane- ous Markov chains were run for 1 M generations, starting from random trees and sampling trees every 100 generation, and 25% of aging samples were discarded, running until the average standard deviation of the split frequencies dropped below 0.01. The phylogram was visualized in FigTree v.1.3.1 (Rambaut 2012) and edited in Adobe Illustrator CS5 (Adobe Systems Inc., USA). The new- ly generated nucleotide sequences were deposited in GenBank (Table 2). Table 2. Isolates and GenBank accession numbers used in the phylogenetic analyses. Species Apiospora acutiapica Ap. agari Ap. aquatica Ap. arctoscopi Ap. armeniaca Ap. arundinis Ap. babylonica Ap. aurea Ap. balearica Ap. bambusae Ap. bambusicaulis Ap. bambusicola Ap. bambusilentiginis Ap. bambusirimae Ap. biserialis Ap. bawanglingensis Ap. camelliae-sinensis Ap. cannae Isolate/Strain KUMCC 20-0210-T KUC 21333-T S-642 KUC 21331-T SAUCC DL1831-T SAUCC DL1844 CBS 133509 CBS 44992 GUCC6.1 GUCC6.2 SAUCC DL1841-T SAUCC DL1864 CBS 24483-T CBS 145129-T ICMP 6889-T CBS 145133 GUCC17.41-T GUCC17.42 MFLUCC 20-0144-T GUCC18.51-T GUCC18.52 GUCC12.51-T GUCC12.52 CGMCC 320135-T GZCC 20-0099 SAUCC BW0444-T SAUCC BW0441 LC 5007-T LC 8181 ZHKUCC 22-0139 Host/ Substrate Bambusa bambos Agarum cribrosum Submerged wood Egg of Arctoscopus japonicus Prunus armeniaca Prunus armeniaca Aspergillus flavus Egg of Arctoscopus japonicus Bamboo Bamboo Salix babylonica Saprophytic leaves Air Poaceae Egg of Arctoscopus japonicus Phyllostachys Aurea Bamboo Bamboo Schizostachyum brachycladum Bamboo Bamboo Bamboo Bamboo Bamboo Dead culms of bamboo Indocalamus longiauritus Indocalamus longiauritus Camellia sinensis Brassica rapa Canna sp. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 Origin China Korea China Korea China China USA USA China China China China Spain Spain China Spain China China Thailand China China China China China China China China China China China ITS MT946343 MH498520 MK828608 MH498529 0Q592540 0Q592539 KF144886 KF144887 PP959159 PP959160 0Q592538 0Q592537 AB220251 MKO014869 MK014874 MK014875 PP959151 PP959152 MW173030 PP959155 PP959156 PP959153 PP959154 MW481708 MW481709 OR739429 0Q592551 KY494704 KY494761 OR164902.1 GenBank Accession No. LSU MT946339 N/A MK835806 N/A 0Q615269 0Q615268 KF144930 KF144931 PP959169 PP959170 0Q615267 0Q615266 KF144935 MK014836 MK014841 MK014842 PP959161 PP959162 MW173087 PP959165 PP959166 PP959163 PP959164 MW478885 MW478886 OR739570 0Q615280 KY494780 KY494837 OR164949.1 TEF1-a MT947360 MH544663 N/A MN868918 0Q613313 0Q613312 KF145018 KF145019 PP998082 PP998083 0Q613311 0Q613310 KF145023 MK017946 MK017951 MK017952 PP998074 PP998075 MW183262 PP998078 PP998079 PP998076 PP998077 MW522938 MW522939 OR753446 0Q613324 KY705103 KY705157 OR166286.1 TUB2 MT947366 MH498478 N/A MH498487 0Q613285 0Q613284 KF 144976 KF 144977 PP998092 PP998093 0Q613283 0Q613282 KF144981 MK017975 MK017980 MK017981 PP998084 PP998085 N/A PP998088 PP998089 PP998086 PP998087 MW522955 MW522956 OR757126 0Q613302 KY705173 KY705229 OR166322.1 236 Kunmin Yu et al.: Three new species of Apiospora — Amphisphaeriales, Apiosporaceae) in China GenBank Accession No. Species Isolate/Strain Host/ Substrate Ap. chiangraiense MFLUCC 21-0053-T Thailand | MZ542520 | MZ542524 Mz546409 Ap. chromolaenae MFLUCC 17-1505-T | Chromolaena odorata Thailand MT040106 | MT214436 | MT235802 N/A Ap. cordyline GUCC 10026 —_—Cordyline fruticosa MT040105 MT040126 | MT040147 China China China MH197124 N/A MH236793 | MH236789 MH197125 N/A MH236794 | MH236790 KY356086 MW481706 MW240647 KY494708 KY494709 OP563373 AB220242 Ap. gaoyouensis CFCC 52301-T CFCC 52302 Ap. garethjonesii JHBO004-T Ap. gelatinosa KHAS 11962-T China Ap. guiyangensis HKAS 102403-T China Ap. guizhouensis LC 5318 Air China EG 532 2<% China Ap. hainanensis SAUCC 1681-T China Ap. hispanicum IMI 326877-T Spain Ap. hydei CBS 114990-T | Bambusa tuldoides China LC 7103 Bamboo China Ap. hyphopodii MFLUCC 15-0003-T | Bamboo China JHB003 China Ap. ibericum AP 10118-T Portugal Ap. intestini CBS 135835-T Gut of grasshopper MFLUCC 21-0045 | Dead culms of bamboo Ap. hysterina ICPM 6889 -T GUCC-19-5271 KUC21438 Phragmites australis Phragmites australis KY356091 N/A N/A MW478888 MW240577 KY494784 Bamboo MW522941 | MW522958 MW759535 | MW775604 KY705107 | KY705177 KY494785 | KY705108 | KY705178 OP572422 | OP573262 | OP573268 AB220336 N/A AB220289 KF144890 | KF144936 | KF145024 | KF144982 KY494715 | KY494791 | KY705114 | KY705183 KRO69110 N/A N/A N/A KY356088 | KY356093 N/A N/A MK014879 | MK014846 | MKO17955 | MK017984 KRO11352 | KR149063 | KRO11351 | KRO11350 MZ542521 | MZ542525 | MZ546406 | MZ546410 MK014874 | MK014841 | MKO17951 | MK017980 0Q236601 | 0Q231496 | 0Q270096 | 0Q249633 ON764019 | ON787758 | ON806623 | ON806633 Bamboo Poaceae Ap. coryli CFCC 58978 -T China | OR125564 0R139978 CFCC 58979 China | OR125565 0R139979 Ap. cyclobalanopsidis CGMCC 320136-T China | MW481713 MW522962 Ap. descalsii CBS 145130-T Spain | MK014870 MK017976 Ap. dichotomanthi LC 4950-T China | KY494697 KY705167 tristaniaecarpa CGMCC 38332 China | KY494755 KY705223 Ap. adinandrae SAUCC 1282B-1-T China | OR739431 OR757128 SAUCC 1282B-2 China | 0R739432 OR757129 Ap. dongyingensis SAUCC 0302-T China | 0P563375 OP573270 Ap. esporlensis CBS 145136-T Spain | MK014878 MK017983 Ap. euphorbiae IMI 285638b Bangladesh | AB220241 N/A AB220288 Ap. fermenti KUC 21289-T Korea | MF615226 N/A MH544667 | MF615231 Phragmites australis Phragmites australis Bamboo Bamboo Poacese Air in karst cave Bamboo Maritime sand Bamboo Arundo donax Thailand New Zealand China South Korea i Bamboo Faba Bean Phyllostachys bambusoides branch Ap. italica CBS 145138-T CBS 145139 Ap. jatrophae AMH-9556 AMH-9557-T Ap. jinanensis SAUCC DL1981-T SAUCC DL2000 Ap. jiangxiensis LC 4494 LC 4577-T Ap. kogelbergensis CBS 113332 CBS 113333-T Ap. koreanum KUC 21332-T Ap. lageniformis KUC21687 KUC21686-T Ap. locuta-pollinis SICAUCC 22-0036 | Unknown LC 11683-T Ap. longistroma MFLUCC 11-0481 -T MK014880 | MK014847 | MK017956 | MK017985 MK014881 | MK0O14848 | MKO17957 | MK017986 HE981191 N/A N/A N/A NR_154675 N/A N/A N/A 0Q592544 | 0Q615273 | 0Q613317 | 0Q613289 0Q592543 | 0Q615272 | 0Q613316 | 0Q613288 KY494690 | KY494766 | KY705089 | KY705160 KY494693 | KY494769 | KY705092 | KY705163 KF144891 | KF144937 | KF145025 | KF144983 KF144892 | KF144938 | KF145026 | KF144984 MH498524 | MH498444 | MH544664 | MH498482 ON764023 | ON787762 | ON806627 | ON806637 ON764020 | ON787759 | ON806624 | ON806634 ON228609 | ON228665 | ON324018 | ON237657 MF939595 N/A MF939616 | MF939622 KU940141 | KU863129 N/A N/A Arundo donax Arundo donax Jatropha podagrica Jatropha podagrica China China China China South Africa South Africa Korea Bambusaceae sp. Bambusaceae sp. Phyllostachys sp. Maesa sp. Restionaceae Restionaceae Egg of Arctoscopus japonicus Phyllostachys nigra Korea Phyllostachys nigra Korea China Thailand Brassica campestris Bamboo MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 237 Kunmin Yu et al.: Three new species of Apiospora Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. Ap. paraphaeosperma Species lophatheri machili malaysiana Marianiae Marii marinum mediterranea minutisporum montagnei mori mukdahanensis multiloculata mytilomorpha neobambusae neochinensis neogarethjonesii neosubglobosa obovata ovata oenotherae Ap. phragmitis Ap. phyllostachydis Ap. piptatheri Ap. pseudomarii Ap. pseudohyphopodii Ap. pseudoparenchymatica Ap. pseudorasikravindrae Ap. pseudosinensis Ap. pseudospegazzinii Ap. pterosperma Ap. pusillisperma Ap. Ap. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 qginlingense rasikravindrae — Amphisphaeriales, Apiosporaceae) in China Isolate/Strain Host/ Substrate Ohi CFCC 58975-T _ Lophatherum gracile OR125566 | OR133588 | OR139970 SAUCC 1175A-4 SAUCC 1175 CBS 102053-T MF DA CFCC 53036-T KUMCC 18-0192-T CBS 115042-T CFCC 58972 MF MF GUCC 10228 -T KUC 21680-T KU CPC 20193-T KUC 21321-T CFCC 52303-T NFCCI 2144-T CFCC 58976 GUCC21.11 GUCC21.12 AP301119 CBS 20057 CBS 49790-T KUC 21328-T IMI 326875-T 17E-042-T AP 301120-T NCYUCC 19-0340 MFLUCC 20-0181-T | Morus australis MFLUCC 22-0056-T LUCC 21-0023-T OM 214595-T LC 7106-T LC 7124 CFCC 53037 JHB006 JHBO007-T LC 4940 LS 395 LUCC 13-0644-T CPC 18900-T LUCC 18-1101-T AP4817A KUC21684 LC 7234-T LC 8173 MCC 20-0208-T CPC 21546-T CBS 102052-T CBS 123185 CFCC 52304 aT Lophatherum gracile Bamboo Bamboo Machilus nanmu Machilus nanmu Macaranga hullettii stem colonised by ants Phleum pratense Beta vulgaris Atmosphere, pharmaceutical excipients, home dust and beach sands Seaweed Air Soil Arundo micrantha Morus australis Bambusoideae Bambusae Andropogon Bamboo Bamboo Fargesia ginlingensis Fargesia ginlingensis Bambusae Bamboo Bamboo Lithocarpus sp. Arundinaria hindsii Lophatherum gracile Lophatherum gracile Dead clumps of Bambusa sp. Phragmites australis Phyllostachys heteroclada Piptatherum miliaceum Aristolochia debilis Phyllostachys pubescens Phyllostachys pubescens Bamboo Bamboo Bambusa dolichoclada Bamboo Macaranga hullettii Lepidosperma gladiatum Lepidosperma gladiatum Seaweed Fargesia ginlingensis Fargesia qinlingensis Soil in karst cave China China China China Malaysia Spain Netherlands Spain China Spain Korea Spain China China Thailand Thailand China China China China China China China China China China China Thailand Italy China Spain China Korea Korea China China China Netherlands Malaysia Australia Australia Korea China China China OR125567 PP959157 PP959158 OR739433 0Q592560 KF144896 ON692407 KF144900 AB220252 GenBank Accession No. PP959167 PP959168 PP998080 PP998081 OR739574 | OR753450 0Q615289 KF144942 ON692423 KF144946 KF144947 0Q613333 KF145030 ON677181 KF145034 KF145035 MH498538 | MH498458 | MH544669 AB220243 LC517882 ON692408 MW114314 MW114313 OP377735 0L873137 KY494685 KY494718 KY494727 MK819291 MK819292 MK070897 KY356089 KY356090 KY494696 KF144903 OR125568 OR125569 KX822128 KF144909 MK351842 MK014893 MT040124 ON764026 ON764027 KY494743 KY494753 MT946344 KF144910 MK070898 KY356094 KY356095 KY494772 KF144950 OR133590 OR133591 KX822124 KF144956 MH368077 MK014860 N/A AB220337 N/A N/A LC518889 ON692424 | ON677182 OP377742 | OP381089 0L873138 N/A N/A N/A KY494794 | KY806204 KY494803 | KY806206 N/A MK818545 N/A MK818546 N/A N/A N/A KY705095 KF145037 OR139972 OR139973 N/A KF145043 MK340918 MK017969 MT040145 ON787765 | ON806630 ON787766 | ON806631 KY494819 KY494829 N/A KF144957 KY705139 KY705149 MT947361 KF145044 KF144911 | KF144958 | KF145045 KF144912 | KF144959 KF144913 MH498533 MH197120 MH197121 JF326454 N/ N/A N/A N/A A MN868930 MH236795 MH236796 N/A TUB2 OR139980 OR139981 PP998090 PP998091 OR757130 0Q613307 KF144988 ON677187 KF144992 KF144993 MH498496 AB220290 LC518888 ON677188 N/A N/A N/A OL874718 N/A KY705186 KY705195 MK818547 MK818548 N/A N/A N/A KY705166 KF144995 OR139982 OR139983 N/A KF145001 MK291949 N/A MT040166 ON806640 ON806641 KY705211 KY705221 MT947367 N/A KF145002 KF145003 KF145004 MH498491 MH236791 MH236792 N/A 238 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Species Ap. sacchari Ap. saccharicola Ap. sargassi Ap. sasae Ap. septata Ap. serenensis Ap. setariae Ap. setostroma Ap. sichuanensis Ap. sorghi Ap. sphaerosperma Ap. stipae Ap. subglobosa Ap. subrosea Ap. taeanensis Ap. thailandica Ap. tropica Ap. vietnamense Ap. xenocordella Ap. yunnana Arthrinium caricicola Isolate/Strain CBS 37267 CBS 66474 CBS 19173 CBS 8317 KUC 21228-T CBS 146808-T CGMCC 320134-T IMI 326869-T CFCC 54041-T KUMCC 19-0217-T HKAS 107008-T URM 93000-T CBS114314-T CBS 146804-T MFLUCC 11-0397-T LC 7291 LC 7292-T KUC 21322-T MFLUCC 15-1999 MFLUCC 15-0202-T MFLUCC 21-0056- + IMI 99670-T CBS 47886-T CBS 59566 MFLUCC 15-0002-T CBS 145127 Host/ Substrate Soil Soil Air Air Sargassum fulvellum Sasa veitchii Bamboo Food, pharmaceutical excipients, atmosphere and home dust Setaria viridis Bambusoideae Poaceae Sorghum bicolor Hordeum vulgare Stipa gigantea Bamboo Bamboo Bamboo Seaweed Bamboo Rotten wood Unknown Citrus sinensis Soil from roadway Soil from roadway Bamboo Carex ericetorum Notes: Strains in this study are marked in bold. N/A = not available. Results Phylogenetic analyses Origin Netherlands Netherlands Netherlands Netherlands Korea Netherlands China Spain China China China Brazil Iran Spain Thailand China China Korea Thailand China Thailand Vietnam Zimbabwe Zimbabwe China China ITS KF144918 KF144919 KF144920 KF144922 KT207746 MW883402 MW481711 AB220250 MT492004 MN528012 MW240648 MK371706 KF144904 MW883403 KRO69112 KY494751 KY494752 MH498515 KU940146 KU940145 OK491657 KX986096 KF144925 KF144926 KU940147 MKO014871 GenBank Accession No. LSU KF144964 KF144965 KF144966 KF144969 N/A MW883797 MWw478890 AB220344 N/A MN528011 MW240578 N/A KF144951 MW883798 KR069113 KY494827 KY494828 MH498435 KU863134 KU863133 OK491653 KX986111 KF144970 KF144971 KU863135 MK014838 TEF1-a KF145049 | KF145050 KF145051 KF145054 MH544677 MW890104 MW522943 N/A MW118456 MN527357 MW759536 N/A KF145038 MW890082 N/A KY705147 KY705148 MH544662 N/A N/A N/A N/A KF145055 N/A N/A MK017948 TUB2 KF145007 KF145008 KF145009 KF145012 KT207644 MW890120 MW522960 AB220297 MT497466 N/A MW775605 MK348526 KF144996 MW890121 N/A KY705219 KY705220 MH498473 N/A N/A OK560922 KY019466 KF145013 N/A N/A MK017977 The combined ITS, LSU, TEF1-a, and TUB2 sequence datasets were analyzed to infer the phylogenetic position of our ten newly sequenced strains within Apio- spora. The dataset consisted of 160 sequences, with Arthrinium caricicola (CBS 145127) as the outgroup taxon. Phylogenetic trees in this study were constructed using maximum likelihood (ML) and Bayesian inference (BI) via the CIPRES web portal with 1,000 bootstrap replicates, yielding the best ML tree (Fig. 1) with the likelihood value of —27,589.015487 and the following model parameters: Esti- mated base frequencies were A = 0.233824, C = 0.249823, G = 0.258804, and T = 0.257550; substitution rates were AC = 1.217800, AG = 3.016069, AT = 1.114592, CG = 0.911613, CT = 4.839047, and GT = 1.0; gamma distribution shape parame- ter: a = 0.724729. In addition, the RAxML and Bayesian analyses yielded a similar tree topology, and therefore, only the ML tree is presented (Fig. 1). The newly generated ten sequences in the present work are separated into three clades. Multi-locus phylogenetic analyses support the recognition of Ap. arundinis and Ap. lophatheri as known species and Ap. bambusicaulis, Ap. bambusirimae, and Ap. bambusilentiginis as newly discovered independent species (Fig. 1). MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 239 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China 100/14.) Apiospora piptatheri AP4817A Apiospora pseudomarii GUCC 10228-T Apiospora longistroma MFLUCC 11-0481-T Apiospora locuta-pollinis LC 11683-T Apiospora locuta-pollinis SICAUCC 22-0036 Apiospora oenotherae CFCC 58972-T Apiospora oenotherae LS 395 Apiospora hispanicum |M| 326877-T Apiospora mediterranea IMI 326875-T Apiospora marii CBS 20057 Apiospora marii CBS 49790-T Apiospora gaoyouensis CFCC 52301-T 51/0.86 Apiospora gaoyouensis CFCC 52302 100/1 1» Apiospora guizhouensis LC 5318 Apiospora guizhouensis LC 5322-T GUCC 18.51 i Tentici GUCC 18.52 Apiospora bambusilentigins Apiospora armeniaca SAUCC DL1844 Apiospora armeniaca SAUCC DL1831-T 84/0.9. Apiospora sacchari CBS 66474 Apiospora sacchari CBS 37267 Apiospora cannae TZHKUCC 22 0139 400/47 Apiospora biserialis CGMCC 320135-T Let Apiospora biserialis GZCC 20-0099 RZ Apiospora gelatinosa KHAS 11962-T Apiospora septata CGMCC 320134-T Apiospora babylonica SAUCC DL1864 Apiospora babylonica SAUCC DL1841-T Apiospora bawanglingensis SAUCC BW0444-T Apiospora bawanglingensis SAUCC BW0441 Apiospora pseudospegazzinii CBS 102052-T Apiospora fermenti KUC 21289-T Apiospora hainanensis SAUCC 1681-T Apiospora serenensis |M| 326869-T sonal Apiospora sphaerosperma CBS 114314-T 78/0.98 Apiospora aquatica S-642 89/1-— Apiospora saccharicola CBS 8317 L Apiospora saccharicola CBS 19173 82/0.8 Apiospora dichotomanthi LC 4950-T ~”- Apiospora dichotomanthi CGMCC 38332 Apiospora ibericum AP 10118-T Apiospora cyclobalanopsidis CGMCC 320136-T Seth Apiospora jiangxiensis LC 4494 oo] + Apiospora jiangxiensis LC 4577-T Apiospora lageniformis KUC21686-T My A, Apiospora lageniformis KUC21687 bo Apiospora ovata CBS 115042-T 1400/1, Apiospora machili SAUCC 1175 Apiospora machili SAUCC 1175A-4 64/0.86[- Apiospora dongyingensis SAUCC 0302-T '— Apiospora camelliae sinensis LC 5007-T Apiospora camelliae sinensis LC-8181 100/1 ) Apiospora coryli CFCC 58978-T Apiospora coryli CFCC 58979 Apiospora setariae CFCC 54041-T -—— Apiospora guiyangensis HKAS 102403-T ‘ml 7110.39 Apiospora arctoscopi KUC 21331-T '———__—. Apiospora obovata LC 4940 60/1 Apiospora intestini MFLUCC 21-0045 a Apiospora hysterina GUCC 19-5271 al Apiospora intestini CBS 135835-T i '—————. Apiospora pusillisperma KUC 21321-T Apiospora chiangraiense MFLUCC 21-0053-T 82/0. 83 Apiospora bambusicola MFLUCC 20-0144-T 100/1 | Apiospora sorghi URM 93000-T Apiospora taeanensis KUC 21322-T naar 100/1 Apiospora acutiapica KUMCC 20-0210-T Rane Apiospora pseudorasikravindrae KUMCC 20-0208-T Soa Apiospora marinum KUC 21328-T Apiospora rasikravindrae NFCCI 2144-T Apiospora paraphaeosperma MFLUCC 13-0644-T Apiospora neochinensis CFCC 53037 Apiospora neochinensis CFCC 53036-T Apiospora sargassi KUC 21228-T 61/0.99 Apiospora chromolaenae MFLUCC 17-1505-T lee cordyline GUCC 10026 9910.99 80/0.99-+ 1 99/0.98: 53/0.91) 7410.79 98/0.9 76/0.9: 74/0.61 98/1 100/1 68/0.99 Apiospora hydei CBS 114990-T 100/1 Apiospora hydei LC 7103 nits Apiospora aurea CBS 24483-T ‘ 100/1_, Apiospora adinandrae SAUCC 1282B-1-T Apiospora_adinandrae SAUCC 1282B-2 Apiospora minutisporum 17E-042-T 91/0.99) Apiospora balearica CBS 145129-T 97/1 Apiospora descalsii CBS 145130-T Apiospora phragmitis CPC 18900-T 100/1! Apiospora montagnei AP 301120-T 100/14) Apiospora jinanensis SAUCC DL1981-T Apiospora jinanensis SAUCC DL2000 Apiospora thailandica MFLUCC 15-1999 Apiospora thailandica MFLUCC 15-0202-T GUCC 17.41 i i A GUCC 17.42 | Apiospora bambusicaulis Apiospora italica CBS 145138-T Apiospora italica CBS 145139 Apiospora lophatheri CFCC 58976 Apiospora lophatheri CFCC 58975-T GUCCC 21.12 | Apiospora lophatheri GUCC 21.11 Apiospora phyllostachydis MFLUCC 18-1101-T 192/0.99 Apiospora malaysiana CBS 102053-T Apiospora euphorbiae IMI 285638b 100/11 Aniospora vietnamense IMI 99670-T 96/0.99 esio.ear GUCC 6.1 | Apiospora arundinis 95 82 53/0.61 98/1 63/0.8 53/0.74| GUCC 6.2 98/1! Apiospora arundinis CBS 133509 Apiospora arundinis CBS 44992 Apiospora agari KUC 21333-T 92/0.97 100/1 r Apiospora kogelbergensis CBS 113333-T ' Apiospora kogelbergensis CBS 113332 100/1 | Apiospora xenocordella CBS 47886-T ' Apiospora xenocordella CBS 59566 85/0.99 Apiospora esporlensis CBS 145136-T 99/1 U—_—_____—_—_——-. Apiospora stipae CBS 146804-T 100/1; Apiospora qinlingense CFCC 52303-T Apiospora qinlingense CFCC 52304 99/1 '————. Apiospora koreanum KUC 21332-T 68/0.98, Apiospora hysterina KUC21438 80/0.99] Apiospora bambusae CBS 145133 100/ts| Apiospora hysterina ICPM 6889-T 870.8571 Apiospora bambusae ICMP 6889-T Apiospora sasae CBS 146808-T Apiospora yunnana MFLUCC 15-0002-T Apiospora marianiae AP301119 96/1; Apiospora pterosperma CBS 123185 Apiospora pterosperma CPC 20193-T Apiospora pseudosinensis CPC 21546-T a iil Be eee 4 Apiospora bambusirimae “evo H Apiospora neogarethjonesii KUMCC 18-0192-T Apiospora setostroma KUMCC 19-0217-T Apiospora garethjonesii KUMCC 16-0202 1400/1) Apiospora subrosea LC 7291 Apiospora subrosea LC 7292-T pL ee a Apiospora neobambusae LC 7124 85/0.97 Apiospora neobambusae LC 7106-T '— Apiospora mytilomorpha DAOM 214595-T so0/4f AP/ospora pseudohyphopoaii KUC 21684 100/1 Apiospora pseudohyphopodii KUC 21680-T 4100/1 Apiospora hyphopodii MFLUCC 15-0003-T Apiospora hyphopodii JHB003 Apiospora pseudoparenchymatica LC 8173 Apiospora pseudoparenchymatica LC 7234-T Apiospora sichuanensis HKAS 107008-T 97/4 7310.98) 100/1 Apiospora mori NCYUCC 19-0340 98/4 Apiospora mori MFLUCC 20-0181-T Apiospora mukdahanensis MFLUCC 22-0056-T 100/1 | Apiospora jatrophae AMH 9557-T Apiospora jatrophae AMH 9556 100/41 { Apiospora neosubglobosa JHBO006 Apiospora neosubglobosa JHB007-T Apiospora tropica MFLUCC 21-C0056-T Apiospora subglobosa MFLUCC 11-0397-T 3x Apiospora multiloculata MFLUCC 21-0023-T Arthrinium caricicola CBS 145127 Figure 1. Phylogenetic tree of Apiospora, inferred from combined ITS, LSU, TEF1-a, and TUB2 genes. Arthrinium caricicola was used as an outgroup. ML bootstrap support values (= 50%) and Bayesian posterior probability (=> 0.90) are shown at nodes. Strains in this study are shown in red, and type strains are marked by a “T”. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 240 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Taxonomy Apiospora arundinis (Corda) Pintos & P. Alvarado, Fungal Syst. Evol. 7: 205 (2021) Fig.<2 Description. Asexual morph: On WA, hyphae smooth, branched, septate, 1.2- 3.5 um diam. (n = 30). Conidiophores cylindrical, septate, erect, sometimes re- duced to conidiogenous cells. Conidiogenous cells erect, subglobose to ampul- liform, aggregated in clusters on hyphae, smooth, branched, 5-15 x 1-2.5 um (x = 8.5 x 6 um, n = 30). Conidia globose, sub-globose to ampulliform, lenticular, occasionally elongated to ellipsoidal, with a longitudinal germ slit, brown to dark brown, smooth to finely roughened, 6-14 x 4—7 um (x = 10.5 x 6 um, n = 30) um. Sexual morph: Not observed. Culture characteristics. Colonies on PDA attaining 5 cm diam, after 4 days at 25 °C, thick, dense, surface with patches of grey aerial mycelia, margin irregular and undulate, diffuse yellow pigment, reverse yellow. Specimens examined. CHINA * Guizhou Province: Guiyang City, on diseased bamboo branch, 5 June 2022, K.M. Yu, living cultures: GUCC 6.1. and GUCC 6.2. Notes. In the present study, two new isolates (GUCC 6.1 and GUCC 6.2) clus- tered together with Ap. arundinis (CBS 133509) with high-support values (ML/ BI = 98/1) in the multi-locus phylogenetic tree (Fig. 1). Morphologically, GUCC 6.1 and GUCC 6.2 have similar conidiophores, conidiogenous cells, and conidia to Ap. arundinis (Li et al. 2023). Ap. arundinis was found on various plants, in- cluding Phyllostachys praecox, Castanea mollissima, and Brunfelsia brasiliensis in China (Chen et al. 2014; Liao et al. 2022; Li et al. 2023). The conidia sizes of our collection (6-14 x 4-7 um) larger than Chen et al. (2014) (5-7 x 2-4 um) and Liao et al. (2022) (4.5-7.4 x 3.3-4.4 um). Comparing with the description from Li et al. (2023) (6.4-10.4 x 5.2-8.3 um), they have similar sizes, but the conidia in this study are slenderer and more elongated. Combining phylogenet- ic tree and morphology, these strains were identified as Ap. arundinis. Apiospora bambusicaulis K.M. Yu & Y.L. Jiang, sp. nov. MycoBank No: 854662 Fig. 3 Type. CHINA * Guizhou Province, Guiyang City, on diseased bamboo branch, 5 June 2022, K.M. Yu, holotype: HGUP 17.41, other living culture: GUCC 17.42. Etymology. Name refers to the host plant, meaning of bamboo stem, from which this fungus was isolated. Description. Asexual morph: On WA, hyphae smooth, branched, septate, hyaline to brown, 1-3.5 um diam (n = 30). Conidiophores cylindrical, septate, straight to flexuous, sometimes reduced to conidiogenous cells. Conidioge- nous cells globose to subglobose, erect, blastic, aggregated in clusters on hy- phae, hyaline to pale brown, smooth, branched, 1.5-3.5 x 2-13.5 um (x = 2.5 x 8 um, n = 30). Conidia globose, sub-globose to ovate, lenticular, with a longi- tudinal germ slit over the entire length, brown to dark brown, smooth, 4.5-6 x 5-6 um (x = 5.5 x 5.5 um, n = 30). Sexual morph: Not observed. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 241 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China —_,. ’ i Figure 2. Apiospora arundinis (GUCC 6.1) A dead bamboo branch with fungi B, C above and below view of the colony on PDA D, E conidia F, G conidiophores and conidiogenous cells. Scale bars: 10 um (D-G). Figure 3. Apiospora bambusicaulis (GUCC 17.41, ex-type culture) A dead bamboo branch with fungi B, C above and below view of the colony on PDA D, E conidia F, G conidiogenous cells giving rise to conidia. Scale bars: 10 um (D-G). Culture characteristics. Colonies on PDA attaining 5 cm diam. after 4 days at 25 °C, circular, flat, radiating outwards, irregular edge, diffuse yellow pigment, the mycelia white to gray, floccose, cottony, reverse yellow. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 242 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Additional specimen examined. CHINA * Guizhou Province: Huaxi District, on diseased branch of bamboo, June 2023, K.M. Yu, HGUP 17.41, ex-paratype living culture; living cultures GUCC 17.41, GUCC 17.42. Notes. The phylogenetic tree indicated that Ap. bambusicaulis is closely re- lated to a clade comprising Ap. thailandica, Ap. jinanensis, and Ap. italica with high support values (ML/BI = 99/1) in the multi-locus phylogenetic tree (Fig. 1). Ap. bambusicaulis differs from Ap. thailandica (Table 4) by 18 nucleotides (13/518 in ITS, 2/804 in LSU, 2/374 in TEF1-a, and 1/265 in TUB2), from Ap. italica by 58 nucleotides (17/518 in ITS, 4/799 in LSU, 26/377 in TEF1-a, and 11/266 in TUB2), and from Ap. jinanensis by 28 nucleotides (3/573 in ITS, 3/821 in LSU, 12/438 in TEF1-a, and 12/464 in TUB2). Morphologically, it differs from Ap. thailandica, Ap. italica, and Ap. jinanensis in conidia (brown, smooth, globose, 4.5-6 x 5-6 um (x = 5.5 x 5.5 um, n = 30) in Ap. bambusicaulis vs. globose, subglobose to lenticular, 5-9 x 5-8 um in Ap. thailandica vs. brown, smooth, globose, (3-) 4-7 (—9) x (1.5-) 2-3 (—5.0) um in Ap. italica vs. brown to dark brown, smooth to finely roughened 5.7-6.9 x 5.2-6.7 um in Ap. jinan- ensis (Table 3), and base pair differences. Therefore, Ap. bambusicaulis is de- scribed as a new species, based on phylogeny and morphological comparison. Apiospora bambusilentiginis K.M. Yu & Y.L. Jiang, sp. nov. MycoBank No: 854667 Fig. 4 Type. CHINA * Guizhou Province: Guiyang City, on diseased stems of bamboo, 6 June 2023, 5 June 2022, K.M. Yu, holotype HGUP 18.51; ex-type culture GUCC 18.51). Etymology. The word bambusilentiginis originated from “bambusaceae,’ referring to the host plant, and “speckle,” referring to cracks caused on bamboo stems, from which this fungus was isolated. Description. Asexual morph: On WA, hyphae smooth, branched, septate, 1—5.5 um diam (n = 30). Conidiophores cylindrical, septate, flexuous, sometimes reduced to conidiogenous cells. Conidiogenous cells smooth, globose to subglobose, 1-5 x 1-2.5 um (x = 1.6 x 1.5 um, n = 30). Conidia globose, subglobose to ovate, len- ticular, with a longitudinal germ slit over the entire length, brown to dark brown, smooth, 6—-8.5 x 4.5-8 um (x = 7.5 x 7.5 um, n = 30). Sexual morph: Not observed. Culture characteristics. Colonies on PDA attaining 5 cm diam. after 5 days at 25 °C, circular, flat, radiating outwards, irregular edge, diffuse yellow pigment, the surface of the culture medium is covered with aerial mycelia, mycelia white, reverse faint yellow. Additional specimen examined. CHINA * Guizhou Province: Huaxi District, on diseased branch of bamboo, June 2023, K.M. Yu, HGUP 18.51, ex-paratype living culture; living cultures GUCC 18.51, GUCC 18.52 Notes. The phylogenetic analysis showed that Apiospora bambusilentiginis is closely related to Ap. guizhouensis and Ap. sacchari (Fig. 1). They differ in distinct morphological characters (Table 3) and nucleotide differences (Table 5). Apio- spora bambusilentiginis differs from Ap. guizhouensis by 18 nucleotides (8/580 in ITS, 8/442 in TEF1-a, and 2/440 in TUB2) and Ap. sacchari by 42 nucleotides (35/583 in ITS, 1/440 in TEF7-a, and 6/483 in TUB2). Morphologically, it differs MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 243 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Figure 4. Apiospora bambusilentiginis (GUCC 18.51, holotype) A dead bamboo branch with fungi B, C above and below view of the colony on PDA D-F, conidia G conidiogenous cells giving rise to conidia. Scale bars: 10 um (D-G). Table 3. Morphology of new Apiospora species and phylogenetic related species. Source Conidia in surface view Species Isolation References country Shape Diam (um) Apiospora bambusilentiginis | Poaceae China globose, subglobose to ovate, lenticular 6-8.5 x 4.5-8 This study Ap. guizhouensis air in karst China globose or subglobose, occasionally 5.0-7.5 x 4.0-7.0 um Wang et al. 2018 cave elongated to ellipsoidal (x =6.1+0.5x5.54+0.6 Ap. sacchari soil Netherlands brown, smooth, granular, globose (6-)7(-8) Pintos and Alvarado 2018 Ap. bambusicaulis Poaceae China globose, subglobose to ovate, lenticular, 4.5-6 x 5-6 This study Ap. italica Poaceae Italy brown, smooth, globose (3.0—) 4.0-7.0 (-9.0) x (1.5-) | Pintos et al. 2019 2:0=3.0.(—5.0) Ap. jinanensis Poaceae China brown to dark brown, smooth to finely, 5.7-6.9 x 5.2-6.7 um, with a Ai et al. 2024 roughened, globose, subglobose to mean + SD of 6.3+0.3x 5640.3 lenticular, Ap. thailandica Poaceae Thailand globose, occasionally elongated 5.0-9.0 x 5.0-8.0 Dai et al. 2017 Ap. bambusirimae Poaceae China globose, subglobose to ovate 9.0-20 x 5-15.5 This study Ap. neogarethjonesii Poaceae China globose 20-35 x 15-30 Hyde et al. 2020 Ap. setostroma Poaceae China obovoid, septate 18-20 x 15-19 Pintos and Alvarado 2021 from Ap. guiyangensis and Ap. sacchari in its conidia. The conidia of Apiospora bambusilentiginis are globose, subglobose to ovate, lenticular, while the conidia of Ap. guizhouensis are guttulate, globose to ellipsoid. In addition, comparing with Ap. guizhouensis (5.0-7.5 x 4.0-7.0 um), the conidia of Apiospora bam- busilentiginis (6—-8.5 x 4.5—8(x = 7.5 x 7.5 um, n = 30) show larger sizes (Crous and Groenewald 2013; Wang et al. 2018). MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 244 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Table 4. Comparison of DNA base differences between Apiospora bambusicaulis and related species. Taxa Loci Apiospora italica ITS LSU TEF TUB Ap. thailandica ITS LSU Ap. jinanenisis ITS LSU TEF TUB Nucleotide differences without gaps Rates of base pair differences 3/571(51,119,460) 0.53% 3/837(32,428,457) 0.36% 30/464(30,34,41,55,106,120,164,166,189,224,233,241) 6.52% 12/467(57,61,78,103,105,154,172,259,251,273,294,402) 2.57% 9/430(54,96,120,375,402,405,417,430,445) 2.10% 5/874(28,33,456,457) 0.57% 3/573(101,445,523) 0.52% TUB:12/464(413,447,459,464,470,560,561,562,566,583,604) 3/821 (392,393,780) 0.37% TEF:12/438(12,41,42,44,46,152,171,172,176) 12/438(12,41,42,44,46,152,171,172,1 76) 2.74% 12/464(413,447,459,464,470,560,561,562,566,583,604) 2.56% Table 5. DNA base differences comparing Apiospora bambusilentiginis sequences and sequences from related species. Taxa Loci Apiospora guizhouensis ITS TEF TUB Ap. sacchari ITS TEF TUB Nucleotide differences without gaps Rates of base pair differences 8/580(13,401,537,549,550,560) 1.38% 8/442(17,24,132,146,190,322,324,325) 1.80% 2/440(296,408 0.05% 35/583(48,51,5,55,56,60,94,98,99,125,136,346.358,366,374,377,391,414,419,4 6.00% 32,344,350,363,365,367,368,468,469,471,477,481,494,514,520,525) 1/440 0.23% 6/483(63,116,269,352) 1.24% Apiospora bambusirimae K.M. Yu & Y.L. Jiang, sp. nov. MycoBank No: 854664 Fig. 5 Type. CHINA * Guizhou Province, Guiyang City, on diseased bamboo branch, 5 June 2022, K.M. Yu, holotype: HGUP 12.51; ex-type culture: GUCC 12.51. other living culture: GUCC 12.52 Etymology. Name bambusirimae originated from “bambusaceae,’ referring to the host plant, meaning bamboo-crack, referring to cracks caused on bam- boo stems, from which this fungus was isolated. Description. Asexual morph: On WA, hyphae smooth, branched, septate, hy- aline to brown, 1.5-3 um diam (n = 30). Conidiophores basauxic, cylindrical, smooth, septate, straight or flexuous, hyaline to brown, sometimes reduced to conidiogenous cells. Conidiophore mother cells arising from the stroma, lagen- iform to ampuliform, hyaline to brown, 13.5-28 x 2—5.5 um (x = 20 x 4 um, n = 30). Conidia globose, subglobose to ovate, with a longitudinal germ slit over the entire length, with granular depositions, brown to dark brown, smooth, 9-20 x 5-15.5 um (x = 20.5 x 13 um, n = 30). Sexual morph: Not observed. Culture characteristics. Colonies on PDA attaining 3.5 cm diam. after 3 days at 25 °C, circular, flat, radiating outwards, irregular edges, diffuse yellow pig- ment, the mycelia white and floccose, cottony, reverse pale yellow. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 245 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China lim : Figure 5. Apiospora bambusirimae A dead bamboo branch with fungi B, C above and below view of the colony on PDA D, E conidia F, G conidiogenous C rise to conidia. Scale bars: 10 pm (D-G). Additional specimen examined. CHINA + Guizhou Province: Huaxi District, on diseased branch of bamboo, June 2023, K.M. Yu, HGUP 12.51, ex-paratype living culture; living cultures GUCC 12.51, GUCC 12.52. Notes. Ap. bambusirimae is genetically close to Ap. neogarethjonesii and Ap. setostroma (Fig. 1), but the conidia of Ap. bambusirimae are 9-20 x 5-15.5 um (x = 20.5 x 13 um, n = 30), shorter and narrower than those of Ap. neogarethjonesii and Ap. setostroma, which are 20-35 x 15-30 um and 18-20 x 15-19 um. We compared the new species with phylogeneti- cally related taxa, based on morphological differences (Table 3) and base pair differences (Table 6). Apiospora lophatheri S.J. Li & C.M. Tian, MycoKeys 99: 297-317 (2023) Fig. 6 Description. Asexual morph: On WA, hyphae of smooth, hyaline, branched, sep- tate, 1-5 um diam. hyphae (n = 30). Conidiogenous cells subglobose to am- pulliform, doliiform, clavate, erect, aggregated in clusters on hyphae, smooth, branched, 3-14 x 1.5-3.5 um (x = 8.5 x 6 um, n = 30). Conidia globose to sub- globose, occasionally elongated to ellipsoidal, lenticular, with a longitudinal germ slit, brown to dark brown, smooth, 4-6.5 x 3-6 um (x = 5.5 x 5 um, n= 30). Sexual morph: Not observed. Culture characteristics. Colonies on PDA attaining 5 cm diam. after 4 days at 25 °C, thick, dense, margin undulate and irregular, diffuse yellow pigment, surface with patches of grey aerial mycelia, and reverse yellow. MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 246 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China ae = — ——EEE — Figure 6. Apiospora lophatheri (GUCC 21.11) A dead bamboo branch with fungi B, C above and below view of the colony on PDA D-F conidia F, G conidiogenous cells giving rise to conidia. Scale bars: 10 um (D-G). Table 6. DNA base differences comparing Apiospora bambusirimae sequences and sequences from related species. Taxa Rates of base pair differences Apiospora neogarethjonesii 1.63% Specimens examined. CHINA: Guizhou Province, Guiyang City, ondiseasedbam- boo branch, 5 June 2022, K.M. Yu, living cultures: GUCC 21.11. and GUCC 21.12. Notes. Ap. lophatheri was isolated from Lophatherum gracile in China (Li et al. 2023). Phylogenetic analyses indicated that the two new isolates (GUCC 21.11 and GUCC 21.12) clustered together with Ap. lophatheri with high sup- port values (ML/BI = 100/0.99) (Fig. 1). Morphologically, our collection has similar conidia to Ap. lophatheri (4—6.5 x 3-6 um (x = 5.5 x 5 um vs. 5.1-8.9 x 4.6-7.7 um) (Li et al. 2023). Thus, these isolates were identified as Ap. lopha- theri, and bamboo as a new host record. Discussion After undergoing significant changes, the classification of Apiospora has now been proposed in Apiosporaceae within Amphisphaeriales and together with Arthrinium and Neoarthrinium as three distinct lineages (Hyde et al. 1998; Crous and Groe- newald 2013; Wang et al. 2018; Pintos et al. 2019; Pintos and Alvarado 2021; Jiang et al. 2022). Morphologically, Apiospora, Arthrinium, and Neoarthrinium are similar in their same basauxic conidiogenesis, but the conidiophores of some Arthrinium and Neoarthrinium species have thick blackish septa, which are infrequently ob- served in Apiospora (Ellis 1965; Wang et al. 2018; Pintos and Alvarado 2021). MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 247 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China The Apiospora species are widely distributed around the world; there are over 90 accepted species (Table 2) and approximately 50 in China. Asia has been found to have the highest diversity of Apiospora, which is probably the result of the rich diversity of bamboo species, especially in China, which has the richest variety of bamboo density (Lobovikov et al. 2007). Apiospora has been found in provinces including Guizhou, Sichuan, Hainan, Jiangxi, Yunnan, Guangxi, Shandong, etc., in China (Zhang and Lu 2023; Li et al. 2023; Yan and Zhang 2024; Ai et al. 2024). Although Apiospora is mainly collected in the Po- aceae family, some others from the Lauraceae, Primulaceae, Theaceae, and Solanaceae plant families, Dichotomanthus tristaniaecarpa and Corylus yunna- nensis (Wang et al. 2018; Jiang et al. 2018; Jiang and Tian 2021; Pintos and Alvarado 2021; Li et al. 2023). In this study, three new Apiospora species (Ap. bambusicaulis, Ap. bam- busirimae, and Ap. bambusilentiginis) and two recognized species (Ap. arundinis and Ap. lophatheri) collected from bamboos in Guiyang City of Guizhou Province are introduced. This is consistent with previous studies (Wang et al. 2018; Jiang and Tian 2021; Liao et al. 2022; Li et al. 2023), where all of the Apiospora species we collected come from the Poaceae located in subtropical regions (on bamboo in Guizhou, China). Therefore, the Apiospora identification has been improved through research combined on morphological and molecular characteristics, host communities, and ecological distribution. Conclusion The preference of Apiospora for hosts and habitats is helpful for the study of this genus. China has abundant biological resources, with bamboo as a representative species widely distributed here. Therefore, a comprehensive investigation of Apiospora species in China is necessary. The differences in lifestyle and host range diversity of Apiospora and the speed of discovery suggest that the number of species may continue to increase in the future. In addition, the morphological differences of Apiospora may be related to the hosts. Investigation and systematic classification of Apiospora are expected to discover more fungal resources of this genus, which is of great significance for this genus of fungi. Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding This work was supported by the Guizhou Provincial Basic Research Program (Natural Science) (NO. [2023] Key 005) and the National Natural Science Foundation of China (NO. 32060009). MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 248 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China Author contributions Conceptualization: Kunmin Yu, Hong Zhang; data curation, Kunmin Yu; funding acquisition, Yulan Jiang; Investigation, Kunmin Yu, Hong Zhang, Kexin Cheng; project administration, Yulan Jiang; Supervision, Yulan Jiang; writing-original draft, Kunmin Yu; writing-review and editing,Kunmin Yu, Hong Zhang, Yulan Jiang,; formal analysis. Author ORCIDs Kunmin Yu ® https://orcid.org/0009-0009-2433-392X Hong Zhang ® https://orcid.org/0000-0003-1894-8169 Kexin Cheng © https://orcid.org/0009-0008-5478-5161 Yulan Jiang © https://orcid.org/0000-0002-2444-3506 Data availability All of the data that support the findings of this study are available in the main text. References Aiello D, Gulisano S, Gusella G, Polizzi G, Guarnaccia V (2018) First report of fruit blight caused by Arthrinium xenocordella on Pistacia vera in Italy. Plant Disease 1853(102): 1853. https://doi.org/10.1094/PDIS-02-18-0290-PDN Ai C, Dong Z, Yun J, Zhang Z, Xia J, Zhang X (2024) Morphological Characteristics of Apiospora (Amphisphaeriales, Apiosporaceae). Microorganisms 12(7): 1372. https:// doi.org/10.3390/microorganisms12071372 Carbone |, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91(3): 553-556. https://doi.org/10.1080/0027 5514.1999.12061051 Chen K, Wu XQ, Huang MX, Han YY (2014) First report of brown culm streak of Phyl- lostachys praecox caused by Arthrinium arundinis in Nanjing, China. Plant Disease 98(9): e1274. https://doi.org/10.1094/PDIS-02-14-0165-PDN Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4(1): 33-154. https://doi.org/10.5598/imafungus.2013.04.01.13 Cubeta MA, Echandi E, Abernethy T, Vilgalys R (1991) Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81(11): 1395-1400. https://doi.org/10.1094/ Phyto-81-1395 Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, Xu JC, Taylor JE, Hyde KD, Chukeatirote E (2017) Bambusicolous fungi. Fungal Diversity 82(1): 1-105. https://doi.org/10.1007/s13225-01 6-0367-8 Ellis MB (1965) Dematiaceous Hyphomycetes. VI. Mycological Papers 103: 1-46. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61(4): 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995 Heo YM, Kim K, Ryu SM, Kwon SL, Park MY, Kang JE, Hong JH, Lim YW, Kim C, Kim BS, Lee D, Kim JJ (2018) Diversity and ecology of marine Algicolous Arthrinium spe- cies as a source of bioactive natural products. Marine Drugs 16(12): 508. https://doi. org/10.3390/md16120508 Hudson HJ (1960) Pyrenomycetes of sugar cane and other grasses in Jamaica. I. Conidia of Apiospora camptospora and Leptosphaeria sacchari. Transactions of MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 249 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China the British Mycological Society 43(4): 607-616. https://doi.org/10.1016/S0007- 1536(60)80051-4 Hudson HJ (1963) Pyrenomycetes of sugar cane and other grasses in Jamaica. |I.Co- nidia of Apiospora montagnei. Transactions of the British Mycological Society 46(1): 19-23. https://doi.org/10.1016/S0007-1536(63)80003-0 Hyde KD, Frohlich J, Taylor JE (1998) Fungi from palms. XXXVI. Reflections on unituni- cate ascomycetes with apiospores. Sydowia Horn 50: 21-80. Hyde KD, Norphanphoun C, Maharachchikumbura S, Bhat D, Jones E, Bundhun D, Chen Y, Bao D, Boonmee §S, Calabon M (2020) Refined families of Sordariomycetes. Myco- sphere 11(1): 305-1059. https://doi.org/10.5943/mycosphere/11/1/7 Jiang N, Li J, Tian CM (2018) Arthrinium species associated with bambooand reed plants in China. Fungal Systematics and Evolution 2: 1-9. https://doi.org/10.3114/ fuse.2018.02.01 Jiang N, Tian CM (2021) The holomorph of Arthrinium setariae sp. nov. (Apiosporaceae, Xylariales) from China. Phytotaxa 483(2): 149-159. https://doi.org/10.11646/phyto- taxa.483.2.7 Jiang HB, Phookamsak R, Hongsanan S, Bhat DJ, Mortimer PE, Suwannarach N, Kakumyan P, Xu J (2022) A review of bambusicolous ascomycota in China with an emphasis on species richness in southwest China. Studies in Fungi 7(1): 1-33. https://doi.org/10.48130/SIF-2022-0020 Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. https://doi.org/10.1093/bib/bbx108 Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Ge- netics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096 Kwon SL, Cho M, Lee YM, Kim C, Lee SM, Ahn BJ, Lee H, Kim JJ (2022) Two unrecorded Apiospora species isolated from marine substrates in Korea with eight new combina- tions (A. piptatheri and A. rasikravindrae). Mycobiology 50(1): 46-54. https://doi.org/ 10.1080/12298093.2022.2038857 LiS, Peng C, Yuan R, Tian C (2023) Morphological and phylogenetic analyses reveal three new species of Apiospora in China. MycoKeys 99: 297-317. https://doi.org/10.3897/ mycokeys.99.108384 Liao J, Jiang W, Wu X, He J, Li H, Wang T, Cheng L, Chen W, Mo L (2022) First report of Apiospora mold on Sugarcane in China caused by Apiospora arundinis (Arthrinium arun- dinis). Plant Disease 106(3): e1058. https://doi.org/10.1094/PDIS-02-21-0386-PDN Liu RY, Li DH, Zhang ZX, Liu SB, Liu XY, Wang YX, Zhao H, Liu XY, Zhang XG, Jiwen X, Wang YJ (2023) Morphological and phylogenetic analyses reveal two new species and a new record of Apiospora (Amphisphaeriales, Apiosporaceae) in China. Mycok- eys 95: 27-45. https://doi.org/10.3897/mycokeys.95.96400 Lobovikov M, Paudel S, Ball L, Piazza M, Guardia M, Ren H, Russo L, Wu JQ (2007) World Bamboo Resources: A Thematic Study Prepared in the Framework of the Global For- est Resources Assessment 2005. Food and Agriculture Organization of The United Nations: Rome, Italy. Mavragani, DC, Abdellatif L, McConkey B, Hamel C, Vujanovic V (2007) First report of damping-off of durum wheat caused by Arthrinium sacchari in the semi-arid Sas- katchewan fields. Plant Disease 91: 469.10. https://doi.org/10.1094/pdis-91-4-0469a O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing panama disease of banana: Concordant evidence from nuclear MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 250 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China and mitochondrial gene genealogies. Proceedings of the National Academy of Sci- ences of the United States of America 95(5): 2044-2049. https://doi.org/10.1073/ pnas.95.5.2044 Petrak F (1925) Mykologische Notizen VIII. Annales Mycologici 23: 1-143. Pintos A, Alvarado P (2021) Phylogenetic delimitation of Apiospora and Arthrinium. Fun- gal Systematics Evolution 7: 197-221.3. https://doi.org/10.3114/fuse.2021.07.10 Pintos A, Alvarado P, Planas J, Jarling R (2019) Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts. MycoKeys 49: 13. https://doi.org/10.3897/mycokeys.49.32115 Rambaut A (2012) FigTree Version 1.4.0. Edinburgh: Institute of Evolutionary Biology; University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey. Ronquist F, Teslenko M, van der Mark P Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029 Saccardo P (1875) Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositorum. Atti del- la Societa Veneto-Trentina di Scienze Naturali 4: 77-100 Samarakoon MC, Hyde KD, Maharachchikumbura SSN, Stadler M, Jones EBG, Promput- tha |, Suwannarach N, Camporesi E, Bulgakov TS, Liu JK (2022) Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomy- cetes). Fungal Diversity 112(1): 1-88. https://doi.org/10.1007/s13225-021-00495-5 Samuels G, McKenzie E, Buchanan DE (1981) Ascomycetes of New Zealand 3. Two new species of Apiospora and their Arthrinium anamorphs on bamboo. New Zealand Jour- nal of Botany 19(2): 137-149. https://doi.org/10.1080/0028825X.1981.10425113 Shrestha P Ibdfez AB, Bauer S, Glassman SI, Szaro TM, Bruns TD, Taylor JW (2015) Fungi isolated from Miscanthus and sugarcane: Biomass conversion, fungal en- zymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels 8(1): 1. https://doi.org/10.1186/s13068-015-0221-3 Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-anal- ysis of large phylogenies. Bioinformatics (Oxford, England) 30(9): 1312-1313. https://doi.org/10.1093/bioinformatics/btu033 Tang X, Goonasekara ID, Jayawardena RS, Jiang HB, Li JF, Hyde K, Kang J (2021) Arthrin- ium bambusicola (Fungi, Sordariomycetes), a new species from Schizostachyum brachycla-dum in northern Thailand. Biodiversity Data Journal 8: e58755. https://doi. org/10.3897/BDJ.8.e58755 Tian X, Karunarathna SC, Mapook A, Promputtha |, Xu J, Bao D, Tibpromma S (2021) One new species and two new host records of Apiospora from bamboo and maize in northern Thailand with thirteen new combinations. Life (Basel, Switzerland) 11(10): e1071. https://doi.org/10.3390/life11101071 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriolo- gy 172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 von Hohnel F (1919) Fragmente zur Mykologie. XXII Mitteilungen, nr. 1092 bis 1153. Sitzungsberichte der Akademie der Wissenschaften in Wien 127(8-9): 549-634. Wang M, Tan XM, Liu F, Cai L (2018) Eight new Arthrinium species from China. MycoKeys 1: 1-24. https://doi.org/10.3897/mycokeys.39.27014 MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 251 Kunmin Yu et al.: Three new species of Apiospora (Amphisphaeriales, Apiosporaceae) in China White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18: 315-322. https://doi.org/10.1016/B978-0-12-3721 80-8.50042-1 Xie J, Lu S, Tarafder E, Pan Y, Peng K, Zeng X, Tian F (2024) Taxonomy, biological char- acterization and fungicide sensitivity assays of Hypomyces cornea sp. nov. caus- ing cobweb disease on Auricularia cornea. Fungal Biology 128(1): 1616-1625. https://doi.org/10.1016/j.funbio.2023.12.007 Yan XN, Zhang CL (2024) Three new endophytic Apiospora species (Apiosporaceae, Amphisphaeriales) from China. MycoKeys 105: 295-316. https://doi.org/10.3897/ mycokeys.105.122583 Yin C, Luo F, Zhang H, Fang X, Zhu T, Li S (2021) First report of Arthrinium kogelbergense causing blight disease of Bambusa intermedia in Sichuan Province, China. Plant Dis- ease 105(1): 214. https://doi.org/10.1094/PDIS-06-20-1159-PDN Zhang JY, Lu YZ (2023) in Zhang, Chen, Boonmee, Wang & Lu. Journal of Fungi (Basel, Switzerland) 9(1096): 8. https://doi.org/10.3390/jof9111096 MycoKeys 112: 233-252 (2025), DOI: 10.3897/mycokeys.112.135493 252