Biodiversity Data Journal 6: e24375 oO) doi: 10.38897/BDJ.6.e24375 open access Data Paper Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin ltanna O. Fernandes, Jorge L.P. de Souzat§ + Instituto Nacional de Pesquisas da Amazénia - INPA, Coordenagao em Biodiversidade - CBio, Av: André Araujo, 2936. Petropolis. 69067-375, Manaus, Brazil § Programa de Pds-Graduagao em Ciéncia e Tecnologia para Recursos Amazénicos, Instituto de Ciéncias Exatas e Tecnologia (ICET), ltacoatiara, Brazil Corresponding author: Itanna O. Fernandes (itanna.fernandes@gmail.com), Jorge L.P. de Souza (Souza.jorge@ gmail.com) Academic editor: Francisco Hita Garcia Received: 09 Feb 2018 | Accepted: 23 Mar 2018 | Published: 2 Apr 2018 Citation: Fernandes |, de Souza J (2018) Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin. Biodiversity Data Journal 6: e24375. https://doi.org/10.3897/BDJ.6.e24375 ZooBank: urn:lsid:zoobank.org:pub:FOF77D85-2CDC-47A1-A60C-ED37E586AA8F Abstract Background Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Ant6nio Hydroelectric Power Plant in the margins of the Madeira River in Rond6énia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured © Fernandes |, de Souza J. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Fernandes |, de Souza J perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre- filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. New information Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017, Sa-Oliveira et al. 2015). Recent studies on dam impacts have begun to be conducted prior to dam implementation (e.g. Bobrowiec and Tavares 2017, Fraga et al. 2014, Moser et al. 2014), thus providing a better overview of the impact and a better assessment of its magnitude. Keywords Formicidae, biodiversity, species occurrence, standardized sampling protocol, tropical forest. Introduction Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems (Pimm et al. 1995, Vitousek 1997). Knowing the spatial and temporal organization of species in natural environments is essential for the understanding and conservation of biodiversity (Barton et al. 2013), as well as fostering land management decisions (Evans and Viengkham 2001). Large-scale, spatially structured sampling is a powerful tool to help land managers decide where to pursue conservation action most effectively (Turner et al. 1995). Even today, it is difficult to access accurate information on the spatial distribution of most organisms and their relationships with environmental variables at large scales, despite the availability of many methods for biodiversity planning and conservation (Barlow et al. 2010, Gibson et al. 2011, Margules et al. 2002). There are databases on species richness (Costello et al. 2013), but richness alone has limited use for conservation, because it does not give information on many endemic species or the Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 3 complementarity of species compositions between regions (Groc et al. 2014, Lamoreux et al. 2005, Sarkar and Margules 2002). Furthermore, most assessments of species—habitat relationships can be compromised if the sampling design of surveys is not spatially clear (Gotelli et al. 2011). Invertebrate populations can indicate longer-term general ecosystem change, such as restoration of mine sites or climate change (e.g., McGeoch 1998, Bisevac and Majer 1999, Parmesan et al. 1999, York 2000). However, despite recognition that monitoring invertebrates is an important endeavour, widely accepted by national and international funding agencies, monitoring efforts have rarely generated returns commensurate to their investment. All too frequently, insect monitoring lacks both specific goals and a framework detailing how results will be integrated into management decision-making. One way to overcome these situations is by using good bioindicators taxa, as well as ants, considered particularly useful for monitoring for a number of reasons. Ants are one of the most successful groups of organisms on the planet (Hdlldobler and Wilson 1990). To date, approximately 13,360 species of ants (anicat.org), all eusocial, have been described and hundreds of new species are described each year. Ant biologists estimate that the Formicidae family could include no fewer than 20,000 species (Hdlldobler and Wilson 1990). All species of ants occupy a nest structure, either temporarily or permanently. These structures can be preexisting cavities or even made their own bodies (e.g. army ants) that do not involve much, if any, excavation or direct modification of the surrounding environments (Guénard 2013). They are abundant and ubiquitous in both intact habitat and disturbed areas (Andersen 1990Majer 1983, Hoffmann et al. 2000), sampling is relatively easy without requiring enormous expertise (Greenslade and Greenslade 1984, Fisher 1999, Agosti and Alonso 2000, Alonso 2000), and ants have proven sensitive and rapid responders to environmental variables (Campbell and Tanton 1981, Majer 1983Andersen 1990). Moreover, ants are important functionally at many different trophic levels (Alonso 2000), and they play critical ecological roles in soil turnover and structure (Humphreys 1981, Lobry de Bruyn and Conacher 1994), nutrient cycling (Levieux 1983, Lal 1988), plant protection, seed dispersal, and seed predation (Ashton 1979, Beattie 1985, Christian 2001). Together, these qualities suggest ants merit monitoring for their own sake, as they provide high information content about an ecologically and numerically dominant group (Underwood and Fisher 2006). Despite the increased availability of methods for conservation planning, adequate information about the spatial distribution of biodiversity in large regions, such as the Amazon Basin, remains sparse for most biological groups (Margules et al. 2002). More than a hundred hydropower dams have already been built in the Amazon Basin and numerous proposals for further dam constructions are under consideration (Latrubesse et al. 2017). Recent scientific reviews have considered the environmental impacts of damming Amazonian rivers (Davidson et al. 2012, Castello and Macedo 2015, Winemiller et al. 2016, Fearnside 2016). The accumulated negative environmental effects of existing dams, not to mention proposed dams (if constructed), have triggered massive hydrophysical and biotic disturbances affecting the Amazon Basin’s floodplains, estuaries 4 Fernandes |, de Souza J and sediment plumes (Latrubesse et al. 2017), as well as causing losses in river connectivity (Anderson et al. 2018). The Santo Ant6nio Hydroelectric Power Plant became operational at the beginning of 2016 in the Madeira River in Rond6énia State. Prior to the construction of the Santo Anténio Plant, the fauna and flora of the impacted area were surveyed in environmental impact studies commissioned by the Brazilian Institute of Environment (IBAMA). The Santo Antonio Hydroelectric Power Plant and its accompanying reservoir represent the first time in history, as far as we know, in which a monitoring program of invertebrates was conducted to evaluate the influence before and after the total filling of the dam in the Amazon Basin. Project description Title: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of the Santo Anténio Hydroelectric Power Plant in the Madeira River in the Brazilian Amazon Personnel: Itanna Oliveira Fernandes, Jorge Luiz Pereira de Souza Study area description: The study was conducted at six sites associated with the Brazilian Biodiversity Research Program (PPBio) — Pedras, Bufalos, Morrinhos, Jaci-Parana MD, Jaci-Parana ME and Teoténio modules — within the influence area of the Santo Anténio Hydroelectric Power Plant in the margins of the Madeira River in Rondénia State. Design description: Ants were sampled in permanent plots with five samples per sampling method. We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each module, transects have a 1 km distance from each other, following the same spatial design. Sampling methods Study extent: The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects (Pedras, Bufalos, Morrinhos, Jaci-Parana MD, Jaci-Parana ME and Teoténio modules), each totalling 30 sampling plots. The transects were distributed 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km from the river's edge, measured perpendicularly from the river margin towards the interior of the forest. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out after the filling of the hydroelectric reservoir. The campaigns were conducted during the dry and Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 5 rainy seasons of the Amazon over four years, with intervals of three months between each campaign (whenever possible). Sampling description: Ants were sampled in permanent plots with five samples per sampling method along the transects 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km (Fig. 1). We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each site, plots were 1 km apart from each other, following the same spatial design. Transect 4km ¢ 3km 2km River eas my Figure 1. EES Transects of each module to collect ants in the influence areas of the Santo Anténio Hydroelectric Power Plant, Porto Velho - RO, with perpendicular distances from the river margin. In details are each transect with a 1 km distance from each other following the same spatial design and each sampling plot in the permanent plots of 250 m length. The protocol adopted for collection of litter ants is called the ALL protocol (leaflet ants), which is globally standardized on inventories of a litter of ant fauna (Agosti and Alonso 2000). Ground-dwelling ants collected in plots using litter samples were processed in Winkler extractors. Litter-dwelling ants were sampled from a 1 m? litter in sampling plots located at 50 m intervals along the center line of each transect. Using a Winkler extractor with a 1 cm? mesh sieve, the leaves were sifted through a wire sieve of 1 cm? mesh size by shaking the sifter vigorously at least 15 times. The ants were extracted from the sifted litter and placed in a mesh bag inside a cotton bag for 24 hours (Fig. 2). If the sifted leaf litter volume exceeded the capacity of a single mini-Winkler extractor, a second extractor was used. In behavioural response to litter drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag (Agosti et al. 2000, Bestelmeyer et al. 2000) (Fig. 3). The litter-sampling procedures were undertaken 6 Fernandes |, de Souza J between 8:00 am and 5:00 pm. All ants were first identified to genus using the taxonomic keys provided by Baccaro et al. 2015. Then, they were sorted into species and morphospecies. We used available taxonomic keys or compared with specimens in collections previously identified by experts. A unique identification was given for each morphospecies based on morphological differences from related species. The morphotyping was the same for all collection sites. Vouchers are deposited in the invertebrate collection of the National Institute of Amazonian Research (INPA). ary rag Figure 2. EE Sample from 1 m? leaf litter of each sampling plot located at 50 m intervals along the transect and mesh sieve used to separate the leaves from the invertebrates. Figure 3. EE Mini-Winkler extractors composed by a mesh bag filled with sifted sample inside and a cotton bag outside. In response to the drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag. Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 7 Geographic coverage Description: Areas of Santo Ant6énio Hydroelectric Power-Plant in Rond6nia, Brazil. Coordinates: -9.25 and -8.59 Latitude; -64.45 and -63.88 Longitude. Taxonomic coverage Description: The ants were identified by species and morphospecies, as well as subfamily. Some genera were recorded for the first time in South America (Syscia Roger, 1861) and others in Rond6énia State (Nylanderia Emery, 1906; Eurhopalothrix Brown & Kempf, 1961; Lachnomyrmex Wheeler, 1910; Mycetarotes Emery, 1913; Mycetophylax Emery, 1913; Nesomyrmex Wheeler, 1910; and Rhopalothrix Mayr, 1870). We also obtained new records of the following species for Rond6énia State: Fulakora degenerata, Tapinoma melanocephalum, Neivamyrmex adnepos, Gnamptogenys acuminata, Gnamptogenys caelata, Gnamptogenys kempfi, Cephalotes pellans, Hylomyrma immanis, Rogeria blanda, Strumigenys deinomastax, Strumigenys_ infidelis, Wasmannia_ rochai, Wasmannia scrobifera, Anochetus mayri, Anochetus neglectus, Anochetus targionii and Leptogenys unistimulosa. A total of 46,342 individuals were collected during four years of field collections. A list of all the ants identified in subfamilies (10), genera (68) and species/ morphospecies (324). More information about the ecological data and occurence is available in Suppl. materials 1, 2 Taxa included: Rank Scientific Name Common Name family Formicidae Latreille, 1809 ant subfamily Agroecomyrmecinae Carpenter, 1930 ant genus Tatuidris Brown & Kempf, 1968 ant species Tatuidris tatusia Brown & Kempf, 1968 ant subfamily Amblyoponinae Forel, 1893 ant genus Fulakora Mann, 1919 ant species Fulakora degenerata (Borgmeier, 1957) ant genus Prionopelta Mayr, 1866 ant species Prionopelta sp. 1 ant subfamily Dolichoderinae Forel, 1878 ant genus Azteca Forel, 1878 ant species Azteca cf. chartiffex Emery, 1896 ant 8 Fernandes |, de Souza J species Azteca sp. 1 ant species Azteca sp. 2 ant species Azteca sp. 3 ant species Azteca sp. 4 ant species Azteca sp. 5 ant genus Dolichoderus Lund, 1831 ant species Dolichoderus bidens (Linnaeus, 1758) ant species Dolichoderus bispinosus (Olivier, 1792) ant species Dolichoderus cogitans Forel, 1912 ant species Dolichoderus debilis Emery, 1890 ant species Dolichoderus decollatus Smith, 1858 ant species Dolichoderus imitator Emery, 1894 ant species Dolichoderus longicollis MacKay, 1993 ant species Dolichoderus septemspinosus Emery, 1894 ant species Dolichoderus sp. 1 ant genus Linepithema Mayr, 1866 ant species Linepithema sp. 1 ant genus Tapinoma Foerster, 1850 ant species Tapinoma melanocephalum (Fabricius, 1793) ant species Tapinoma sp. 1 ant subfamily Dorylinae Leach, 1815 ant genus Cheliomyrmex Mayr, 1870 ant species Cheliomyrmex megalonyx Wheeler, 1921 ant genus Eciton Latreille, 1804 ant species Eciton burchellii (Westwood, 1842) ant genus Labidus Jurine, 1807 ant species Labidus praedator (Smith, 1858) ant species Labidus spininodis (Emery, 1890) ant genus Neivamyrmex Borgmeier, 1940 ant species Neivamyrmex adnepos (Wheeler, 1922) ant species Neivamyrmex angustinodis (Emery, 1888) ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... species Neivamyrmex sp. 3 ant genus Neocerapachys Borowiec, 2016 ant species Neocerapachys splendens (Borgmeier, 1957) ant genus Syscia Roger, 1861 ant species Syscia augustae (Wheeler, 1902) ant subfamily Ectatomminae Emery, 1895 ant genus Ectatomma Smith, 1858 ant species Ectatomma brunneum Smith, 1858 ant species Ectatomma edentatum Roger, 1863 ant species Ectatomma lugens Emery, 1894 ant genus Gnamptogenys Roger, 1863 ant species Gnamptogenys acuminata (Emery, 1896) ant species Gnamptogenys caelata Kempf, 1967 ant species Gnamptogenys ericae (Forel, 1912) ant species Gnamptogenys haenschi (Emery, 1902) ant species Gnamptogenys horni (Santschi, 1929) ant species Gnamptogenys kempfi Lenko, 1964 ant species Gnamptogenys moelleri (Forel, 1912) ant species Gnamptogenys pleurodon (Emery, 1896) ant species Gnamptogenys relicta (Mann, 1916) ant species Gnamptogenys sp. 1 ant species Gnamptogenys sp. 11 ant species Gnamptogenys sp. 3 ant species Gnamptogenys sp. 5 ant species Gnamptogenys tortuolosa (Smith, 1858) ant genus Typhlomyrmex Mayr, 1862 ant species Typhlomyrmex sp. 1 ant subfamily Formicinae Latreille, 1809 ant genus Acropyga Roger, 1862 ant species Acropyga sp. 1 ant genus Brachymyrmex Mayr, 1868 ant 10 Fernandes |, de Souza J species Brachymyrmex sp. 1 species Brachymyrmex sp. 2 species Brachymyrmex sp. 3 species Brachymyrmex sp. 4 species Brachymyrmex sp. 5 species Brachymyrmex sp. 6 genus Camponotus Mayr, 1861. species Camponotus atriceps (Smith, 1858) species Camponotus blandus (Smith, 1858) species Camponotus cameranoi Emery, 1894 species Camponotus crassus Mayr, 1862 species Camponotus fastigatus Roger, 1863 species Camponotus femoratus (Fabricius, 1804) species Camponotus novogranadensis Mayr, 1870 species Camponotus rapax (Fabricius, 1804) species Camponotus rectangularis Emery, 1890 species Camponotus sericeiventris (Guérin-Méneville, 1838) species Camponotus sp. 5 species Camponotus sp. 6 genus Gigantiops Roger, 1863 species Gigantiops destructor (Fabricius, 1804) genus Nylanderia Emery, 1906 species Nylanderia cf. caeciliae (Forel, 1899) species Nylanderia cf. fulva (Mayr, 1862) species Nylanderia cf. guatemalensis (Forel, 1885) species Nylanderia sp. 3 species Nylanderia sp. 5 subfamily Myrmicinae Lepeletier de Saint-Fargeau, 1835 genus Acromyrmex Mayr, 1865 species Acromyrmex cf. subterraneus (Forel, 1893) genus Allomerus Mayr, 1878 ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 11 species Allomerus octoarticulatus Mayr, 1878 ant genus Apterostigma Mayr, 1865 ant species Apterostigma auriculatum Wheeler, 1925 ant species Apterostigma gr. pilosum ant genus Atta Fabricius, 1804 ant species Atta cephalotes (Linnaeus, 1758) ant species Atta sexdens (Linnaeus, 1758) ant genus Basiceros Schulz, 1906 ant species Basiceros militaris (Weber, 1950) ant genus Blepharidatta Wheeler, 1915 ant species Blepharidatta brasiliensis Wheeler, 1915 ant genus Carebara Westwood, 1840 ant species Carebara gr. lignata ant species Carebara sp. 1 ant species Carebara sp. 2 ant species Carebara sp. 5 ant species Carebara urichi (Wheeler, 1922) ant genus Cephalotes Latreille, 1802 ant species Cephalotes atratus (Linnaeus, 1758) ant species Cephalotes minutus (Fabricius, 1804) ant species Cephalotes pellans De Andrade, 1999 ant species Cephalotes pusillus (Klug, 1824) ant species Cephalotes sp. 1 ant species Cephalotes sp. 2 ant species Cephalotes sp. 3 ant genus Crematogaster Lund, 1831 ant species Crematogaster acuta (Fabricius, 1804) ant species Crematogaster brasiliensis Mayr, 1878 ant species Crematogaster carinata Mayr, 1862 ant species Crematogaster curvispinosa Mayr, 1862 ant species Crematogaster flavosensitiva Longino, 2003 ant 12 species species species species species species species genus species species species species species species species species species genus species genus species species species species species species species genus species genus species Fernandes |, de Souza J Crematogaster limata Smith, 1858 Crematogaster longispina Emery, 1890 Crematogaster nigropilosa Mayr, 1870 Crematogaster sotobosque Longino, 2003 Crematogaster sp. 2 Crematogaster siollii Forel, 1885 Crematogaster tenuicula Forel, 1904 Cyphomyrmex Mayr, 1862 Cyphomyrmex laevigatus Weber, 1938 Cyphomyrmex minutus Mayr, 1862 Cyphomyrmex peltatus Kempf, 1966 Cyphomyrmex rimosus (Spinola, 1851) Cyphomyrmex cf. salvini Forel, 1899 Cyphomyrmex sp. 12 Cyphomyrmex sp. 13 Cyphomyrmex sp. 3 Cyphomyrmex sp. 4 Eurhopalothrix Brown & Kempf, 1961 Eurhopalothrix pilulifera Brown & Kempf, 1960 Hylomyrma Forel, 1912 Hylomyrma dentiloba (Santschi, 1931) Hylomyrma cf. dolichops Kempf, 1973 Hylomyrma immanis Kempf, 1973 Hylomyrma longiscapa Kempf, 1961 Hylomyrma cf. reitteri (Mayr, 1887) Hylomyrma sp. 2 Hylomyrma sp. 3 Lachnomyrmex Wheeler, 1910 Lachnomyrmex sp. 1 Megalomyrmex Forel, 1885 Megalomyrmex balzani Emery, 1894 ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 13 species Megalomyrmex cuatiara Brandao, 1990 ant species Megalomyrmex drifti Kempf, 1961 ant species Megalomyrmex goeldii Forel, 1912 ant species Megalomyrmex leoninus Forel, 1885 ant species Megalomyrmex sp. 2 ant species Megalomyrmex sp. 5 ant species Megalomyrmex sp. 8 ant species Megalomyrmex wallacei Mann, 1916 ant genus Monomorium Mayr, 1855 ant species Monomorium pharaonis (Linnaeus, 1758) ant genus Mycetarotes Emery, 1913 ant species Mycetarotes sp. 1 ant genus Mycetophylax Emery, 1913 ant species Mycetophylax cf. lectus (Forel, 1911) ant species Mycetophylax strigatus (Mayr, 1887) ant genus Mycocepurus Forel, 1893 ant species Mycocepurus goeldii (Forel, 1893) ant species Mycocepurus sp. 1 ant species Mycocepurus sp. 2 ant species Mycocepurus sp. 3 ant genus Myrmicocrypta Smith, 1860 ant species Myrmicocrypta sp. 1 ant species Myrmicocrypta sp. 2 ant genus Nesomyrmex Wheeler, 1910 ant species Nesomyrmex pleuriticus (Kempf, 1959) ant genus Ochetomyrmex Mayr, 1878 ant species Ochetomyrmex semipolitus Mayr, 1878 ant genus Octostruma Forel, 1912 ant species Octostruma balzani (Emery, 1894) ant species Octostruma iheringi (Emery, 1888) ant species Octostruma sp. 1 ant 14 species species genus species genus species species species species species species species species species species species species species species species species species species species species species species species species species species Octostruma sp. 2 Octostruma sp. 3 Fernandes |, de Souza J Oxyepoecus Santschi, 1926 Oxyepoecus ephippiatus Albuquerque & Brandao, 2004 Pheidole Westwood, 1839 Pheidole fracticeps Wilson, 2003 Pheidole biconstricta Mayr, 1870 Pheidole flavens Roger, 1863 Pheidole vorax (Fabricius, 1804) Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. Pheidole sp. 1 4 6 4 26 27 ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 15 species Pheidole sp. 28 ant species Pheidole sp. 29 ant species Pheidole sp. 3 ant species Pheidole sp. 30 ant species Pheidole sp. 32 ant species Pheidole sp. 40 ant species Pheidole sp. 41 ant species Pheidole sp. 42 ant species Pheidole sp. 43 ant species Pheidole sp. 44 ant species Pheidole sp. 45 ant species Pheidole sp. 46 ant species Pheidole sp. 47 ant species Pheidole sp. 48 ant species Pheidole sp. 49 ant species Pheidole sp. 5 ant species Pheidole sp. 50 ant species Pheidole sp. 51 ant species Pheidole sp. 52 ant species Pheidole sp. 53 ant species Pheidole sp. 54 ant species Pheidole sp. 55 ant species Pheidole sp. 7 ant species Pheidole sp. 8 ant species Pheidole sp. 9 ant genus Rhopalothrix Mayr, 1870 ant species Rhopalothrix sp. 1 ant species Rhopalothrix sp. 2 ant genus Rogeria Emery, 1894 ant species Rogeria alzatei Kugler, 1994 ant species Rogeria cf. belti Mann, 1922 ant 16 species species species species species species genus species species genus species species species species species species species species species species genus species genus species species species species species species species species Fernandes |, de Souza J Rogeria blanda (Smith, 1858) Rogeria cf. cornuta Kugler, 1994 Rogeria cf. cuneola Kugler, 1994 Rogeria leptonana Kugler, 1994 Rogeria sp. 1 Rogeria sp. 2 Sericomyrmex Mayr, 1865 Sericomyrmex sp. 1 Sericomyrmex sp. 2 Solenopsis Westwood, 1840 Solenopsis cf. castor Forel, 1893 Solenopsis cf. clytemnestra Emery, 1896 Solenopsis geminata (Fabricius, 1804) Solenopsis gr. molesta Solenopsis cf. loretana Santschi, 1936 Solenopsis cf. saevissima (Smith, 1855) Solenopsis sp. 3 Solenopsis sp. 5 Solenopsis sp. 7 Solenopsis substituta Santschi, 1925 Stegomyrmex Emery, 1912 Stegomyrmex cf. olindae Feitosa, Brandao & Diniz, 2008 Strumigenys Smith, 1860 Strumigenys appretiata (Borgmeier, 1954) Strumigenys beebei (Wheeler, 1915) Strumigenys deinomastax (Bolton, 2000) Strumigenys denticulata Mayr, 1887 Strumigenys elongata Roger, 1863 Strumigenys infidelis Santschi, 1919 Strumigenys inusitata (Lattke, 1992) Strumigenys cf. perparva Brown, 1958 ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 17 species Strumigenys smithii Forel, 1886 ant species Strumigenys sp. 1 ant species Strumigenys sp. 10 ant species Strumigenys sp. 13 ant species Strumigenys sp. 14 ant species Strumigenys sp. 15 ant species Strumigenys sp. 2 ant species Strumigenys sp. 3 ant species Strumigenys sp. 4 ant species Strumigenys sp. 5 ant species Strumigenys sp. 6 ant species Strumigenys sp. 7 ant species Strumigenys sp. 8 ant species Strumigenys sp. 9 ant species Strumigenys cf. trinidadensis Wheeler, 1922 ant species Strumigenys trudifera Kempf & Brown, 1969 ant species Strumigenys zeteki (Brown, 1959) ant genus Trachymyrmex Forel, 1893 ant species Trachymyrmex cf. bugnioni (Forel, 1912) ant species Trachymyrmex cf. cornetzi (Forel, 1912) ant species Trachymyrmex cf. diversus Mann, 1916 ant species Trachymyrmex cf. farinosus (Emery, 1894) ant species Trachymyrmex cf. mandibularis Weber, 1938 ant species Trachymyrmex cf. opulentus (Mann, 1922) ant species Trachymyrmex cf. ruthae Weber, 1937 ant species Trachymyrmex sp. 10 ant species Trachymyrmex sp. 3 ant species Trachymyrmex sp. 7 ant species Trachymyrmex sp. 8 ant species Trachymyrmex sp. 9 ant genus Tranopelta Mayr, 1866 ant 18 Fernandes |, de Souza J species Tranopelta gilva Mayr, 1866 ant species Tranopelta sp. 1 ant genus Wasmannia Forel, 1893 ant species Wasmannia auropunctata (Roger, 1863) ant species Wasmannia rochai Forel, 1912 ant species Wasmannia scrobifera Kempf, 1961 ant species Wasmannia sp. 1 ant subfamily Ponerinae Lepeletier de Saint-Fargeau, 1835 ant genus Anochetus Mayr, 1861 ant species Anochetus diegensis Forel, 1912 ant species Anochetus emarginatus (Fabricius, 1804) ant species Anochetus horridus Kempf, 1964 ant species Anochetus mayri Emery, 1884 ant species Anochetus neglectus Emery, 1894 ant species Anochetus targionii Emery, 1894 ant genus Dinoponera Roger, 1861 ant species Dinoponera gigantea (Perty, 1833) ant genus Hypoponera Santschi, 1938 ant species Hypoponera sp. 1 ant species Hypoponera sp. 16 ant species Hypoponera sp. 2 ant species Hypoponera sp. 3 ant species Hypoponera sp. 4 ant species Hypoponera sp. 5 ant species Hypoponera sp. 6 ant species Hypoponera sp. 7 ant species Hypoponera sp. 8 ant species Hypoponera sp. 9 ant genus Leptogenys Roger, 1861 ant species Leptogenys unistimulosa Roger, 1863 ant genus Mayaponera Schmidt & Shattuck, 2014 ant Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 19 species Mayaponera constricta (Mayr, 1884) ant genus Neoponera Emery, 1901 ant species Neoponera apicalis (Latreille, 1802) ant species Neoponera cavinodis Mann, 1916 ant species Neoponera commutata (Roger, 1860) ant species Neoponera laevigata (Smith, 1858) ant species Neoponera unidentata (Mayr, 1862) ant species Neoponera venusta Forel, 1912 ant species Neoponera verenae Forel, 1922 ant genus Odontomachus Latreille, 1804 ant species Odontomachus bauri Emery, 1892 ant species Odontomachus caelatus Brown, 1976 ant species Odontomachus chelifer (Latreille, 1802) ant species Odontomachus haematodus (Linnaeus, 1758) ant species Odontomachus hastatus (Fabricius, 1804) ant species Odontomachus laticeps Roger, 1861 ant species Odontomachus meinerti Forel, 1905 ant species Odontomachus sp. 1 ant species Odontomachus sp. 2 ant genus Pachycondyla Smith, 1858 ant species Pachycondyla crassinoda (Latreille, 1802) ant species Pachycondyla harpax (Fabricius, 1804) ant species Pachycondyla impressa (Roger, 1861) ant species Pachyconadyla sp. 1 ant species Pachycondyla sp. 2 ant species Pachyconadyla sp. 3 ant species Pachycondyla striata Smith, 1858 ant genus Pseudoponera Emery, 1900 ant species Pseudoponera stigma (Fabricius, 1804) ant genus Rasopone Schmidt & Shattuck, 2014 ant species Rasopone arhuaca (Forel, 1901) ant 20 Fernandes |, de Souza J genus Simopelta Mann, 1922 ant species Simopelta anomma Fernandes et al., 2015 ant species Simopelta jeckylli (Mann, 1916) ant genus Thaumatomyrmex Mayr, 1887 ant species Thaumatomyrmex atrox Weber, 1939 ant subfamily Proceratiinae Emery, 1895 ant genus Discothyrea Roger, 1863 ant species Discothyrea denticulata Weber, 1939 ant species Discothyrea humilis Weber, 1939 ant species Discothyrea sexarticulata Borgmeier, 1954 ant subfamily Pseudomyrmecinae Smith, 1952 ant genus Pseudomyrmex Lund, 1831 ant species Pseudomyrmex ita (Forel, 1906) ant species Pseudomyrmex simplex (Smith, 1877) ant species Pseudomyrmex sp. 2 ant species Pseudomyrmex sp. 3 ant species Pseudomyrmex tenuis (Fabricius, 1804) ant species Pseudomyrmex termitarius (Smith, 1855) ant Temporal coverage Notes: 2011-09-02 through 2011-09-09, 2011-11-17 through 2012-12-03, 2012-02-28 through 2012-03-12, 2012-05-30 through 2012-06-11, 2013-09-19 through 2013-01-31, 2013-04-18 through 2013-04-28, 2013-06-28 through 2013-07-05, 2013-10-20 through 2013-09-26, 2014-01-17 through 2014-01-27, 2014-11-13 through 2014-11-23 Collection data Collection name: Instituto Nacional de Pesquisas da Amaz6nia - INPA/ Colegao de Invertebrados/ HYM Specimen preservation method: alcohol, pinned Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 21 Usage rights Use license: Other IP rights notes: This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License. Data resources Data package title: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Ant6nio Hydroelectric Power-Plant in Rondénia, Brazil. Alternative identifiers: 914c3b86-f2a1-4d5e-b343-b2597b9d4542, hittps:// ipt.sibbr.gov.br/sibbr/resource? r=ant_ monitoring in santo antonio hydroelectric power plant _rondonia Number of data sets: 2 Data set name: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Ant6nio Hydroelectric Power-Plant in Rondénia, Brazil. Character set: Event Data format: Darwin Core Description: Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antonio Hydroelectric Power Plant in the margins of the Madeira River, Rond6onia. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects in each module, totaling 30 sampling plots in each module. Transects were distrubuted with 0 km, 0.5 km, 1 km, 2 km, 3 km, and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, we used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (Febuary 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9.165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera, and 324 species/morphospecies (Fig. 4). The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna. 22 Fernandes |, de Souza J 300 = 250 n 8 200 4 i & 2 a 2 8 150 4 a no t= < 100 4 50 Sampling events — Before reservoir filling —— After reservoir filling T T T T T 0 2000 4000 6000 8000 Figure 4. EE Ocurrence data Species occurrence before and after reservoir filling in the Santo Ant6énio Hydroelectric Power Plant. Dotted lines mark the 95% confidence intervals. Column label eventID eventDate eventTime habitat samplingProtocol samplingEffort eventRemarks sampleSizeUnit sampleSizeValue fieldNotes continent country countryCode stateProvince Column description An identifier for the set of information associated with an Event (something that occurs at a place and time). The date-time or interval during which an Event occurred. For occurrences, this is the date-time when the event was recorded. The time or interval during which an Event occurred. A category or description of the habitat in which the Event occurred. The name of, reference to, or description of the method or protocol used during an Event. The amount of effort expended during an Event. Comments or notes about the Event. The unit of measurement of the size (time duration, length, area or volume) of a sample ina sampling event. A numeric value for a measurement of the size (time duration, length, area or volume) of a sample in a sampling event. The text of notes taken in the field about the Event. The name of the continent in which the Location occurs. The name of the country or major administrative unit in which the Location occurs The standard code for the country in which the Location occurs. The name of the next smaller administrative region than country (state, province, canton, department, region, etc.) in which the Location occurs. Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... county locality locationRemarks decimalLongitude decimalLatitude modified datasetName type language institutionID institutionCode rightsHolder 23 The full, unabbreviated name of the next smaller administrative region than stateProvince (county, shire, department, etc.) in which the Location occurs. The specific description of the place. Comments or notes about the Location. The geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location. The geographic latitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location. The most recent date-time on which the resource was changed. The name identifying the data set from which the record was derived. A list of nomenclatural types. A language of the resource. An identifier for the institution having custody of the material referred to in the record. The acronym in use by the institution having custody of the material referred to in the record. The organization owning the rights over the resource. Data set name: Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Anténio Hydroelectric Power-Plant in Rondénia, Brazil. Character set: Occurrence Column label ID type modified language license rightsHolder institutionID institutionCode datasetName basisOfRecord dynamicProperties occurrencelD Column description An identifier for the Identification (an identifier specific to the data set). A list of nomenclatural types. The most recent date-time on which the resource was changed. A language of the resource. A legal document giving official permission to do something with the resource. The organization owning the material rights over the resource. An identifier for the institution having custody of the material referred to in the record. The acronym in use by the institution having custody of the material referred to in the record. The name identifying the data set from which the record was derived. The specific nature of the data record. A list of additional measurements, facts, characteristics, or assertions about the record. An identifier for the Occurrence. 24 recordNumber recordedBy organismQuantity organismQuantityType SEX lifeStage reproductiveCondition preparations disposition eventID identifiedBy scientificName kingdom phylum class order family genus specificEpithet taxonRank vernacularName Fernandes |, de Souza J An identifier given to the Occurrence at the time it was recorded. A list of names of people responsible for recording the original Occurrence. A number for the quantity of organisms. The type of quantification system used for the quantity of organisms. The sex of the biological individual(s) represented in the Occurrence. The age class or life stage of the biological individual(s) at the time the Occurrence was recorded. The reproductive condition of the biological individual(s) represented in the Occurrence. A list of preparations and preservation methods for a specimen. The current state of a specimen with respect to the collection identified in collectionCode or collection|ID. An identifier for the set of information associated with an Event (something that occurs at a place and time). A list of names of people who assigned the Taxon to the subject. An identifier for the nomenclatural details of a scientific name. The full scientific name of the kingdom in which the taxon is classified. The full scientific name of the phylum or division in which the taxon is classified. The full scientific name of the class in which the taxon is classified. The full scientific name of the order in which the taxon is classified. The full scientific name of the family in which the taxon is classified. The full scientific name of the genus in which the taxon is classified. The name of the first or species epithet of the scientificName. The taxonomic rank of the most specific name in the scientificName. A common or vernacular name. Additional information Fernandes | (2017): Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Ant6nio Hydroelectric Power-Plant in Rond6énia, Brazil. v1.7. Sistema de Informagao sobre a Biodiversidade Brasileira - SiBBr. Dataset/Samplingevent. https://ipt.sibbr.gov.br/sibbr/resource? r=ant_ monitoring in santo antonio hydroelectric power plant rondonia&v=1.7 Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 25 Acknowledgements We thank Adriano Henrique Oliveira for his help in sampling ants, as well as Fernando Fernandez, Jacques Delabie, John Longino, José Vilhena, and Rodrigo Feitosa for confirming some species identifications for this study. The concessionaires responsible for building and operating the Santo Anténio Hydroelectric Plant, SAE and Probiota Consultoria Ambiental, provided financial and logistical support. J.L.P.S. was supported by the CNPq and FAPEAM post-doctoral scholarship; 1.0.F. was supported by the CNPq and CAPES doctoral scholarship. We also thank the INPA for providing the facilities for the sorting and identification of the species. |.0.F. is grateful for all support offered by SiBBr, as well as the assistance offered by Nayara Tartari Soto (SiBBr) with the spreadsheet standardization instructions in DwC. |.O.F. is also grateful for the award offered by GBIF in 2017, the Young Research Award, which enabled the present publication. Author contributions All the authors have wrote, edited, built and analyzed the database. References ° Agosti D, Alonso LE (2000) The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Schultz TR (Eds) Ants. Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, DC, USA, 204-206 pp. ° Agosti D, Majer JD, Alonso L, Schultz TR (2000) Ants standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, DC, USA. ° Alonso LE (2000) Ants as indicators of diversity. In: Agosti D, Majer JD, Alonso LE, Schultz TR (Eds) Ants. Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, DC, USA, 80-88 pp. ° Andersen AN (1990) The use of ant communities to evaluate change in Australian terrestrial ecosystems: a review and a recipe. Proceedings of the Ecological Society of Australia 16: 347-357. ° Anderson EP, Jenkins CN, Heilpern S, Maldonado-Ocampo JA, Carvajal-Vallejos FM, Encalada AC, Rivadeneira JF, Hidalgo M, Cahas CM, Ortega H, Salcedo N, Maldonado M, Tedesco PA (2018) Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances 4 (1): eaao1642. hitps://doi.org/10.1126/sciadv.aao1642 ° Ashton DH (1979) Seed harvesting by ants in forests Eucalyptus regnans F. Muell. in central Victoria. Australian Journal of Ecology 4: 265-277. https://doi.org/10.1111/ j.1442-9993.1979.tb01218.x ° Baccaro F, Feitosa R, Fernandez F, Fernandes IO, Izzo T, Souza JP, Solar RC (2015) Guia para os géneros de formigas do Brasil. Editora INPA, 388 pp. htips:// doi.org/10.5281/ZENODO.32912 26 Fernandes |, de Souza J Barlow J, Ewers RM, Anderson L, Aragao LEOC, Baker TR, Boyd E, Feldpausch TR, Gloor E, Hall A, Malhi Y, Milliken W, Mulligan M, Parry L, Pennington T, Peres CA, Phillips OL, Roman-Cuesta RM, Tobias JA, Gardner TA (2010) Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews 86 (2): 457-474. htips://doi.org/10.1111/ j.1469-185x.2010.00155.x Barton PS, Cunningham SA, Manning AD, Gibb H, Lindenmayer DB, Didham RK (2013) The spatial scaling of beta diversity. Global Ecology and Biogeography 22 (6): 639-647. https://doi.org/10.1111/geb.12031 Beattie AJ (1985) The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge University Press, New York, USA. Benchimol M, Peres C (2015) Data from: Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. Dryad Digital Repository https://doi.org/10.5061/DRYAD.C301H Bestelmeyer BT, Agosti D, Alonso LE, Brandao CRF, Brown WLJ, Delabie JHC, Silvestre R (2000) Field techniques for the study of ground-dwelling ant: an overview, description, and evaluation. Ants. Standard Methods for Measuring and Monitoring Biodiversity. 122-144 pp. Bisevac L, Majer JD (1999) Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia. Restoration Ecology 7: 117-126. https://doi.org/10.1046/j.1526-100X.1999.72002.x Bobrowiec PED, Tavares VdC (2017) Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon. PLoS ONE 12 (9): e0183036. https://doi.org/10.1371/journal.pone.0183036 Campbell AJ, Tanton MT (1981) Effects of fire on the invertebrate fauna of soil and litter of a eucalypt forest. In: Gill AM, Groves RH, Noble IR (Eds) Fire and the Australian Biota. Australian Academy of Sciences, Canberra, Australia, 215-241 pp. Castello L, Macedo MN (2015) Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22: 990-1007. hitps://doi.org/10.1111/gcb.13173 Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413: 635-639. https:// doi.org/10.1038/35098093 Costa FRC, Magnusson WE (2010) The need for large-scale, integrated studies of biodiversity - the experience of the Program for Biodiversity Research in Brazilian Amazonia. Natureza & Conservagao 8 (1): 3-12. htips://doi.org/10.4322/ natcon.00801001 Costello MJ, Michener WK, Gahegan M, Zhang ZQ, Bourne PE (2013) Biodiversity data should be published, cited, and peer reviewed. Trends in Ecology & Evolution 28 (8): 454-461. https://doi.org/10.1016/j.tree.2013.05.002 Davidson E, de Araujo A, Artaxo P, Balch J, Brown IF, Bustamante MC, Coe M, DeFries R, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho B, Souza C, Wofsy S (2012) The Amazon basin in transition. Nature 481 (7381): 321-328. httos:// doi.org/10.1038/nature10717 Evans TD, Viengkham OV (2001) Inventory time-cost and statistical power: a case study of a Lao rattan. Forest and Ecology Management 150: 313-322. Fearnside PM (2016) Brazilian politics threaten environmental policies. Science 353 (6301): 746-748. https://doi.org/10.1126/science.aag0254 Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 27 Fisher BL (1999) Improving inventory efficiency: a case study of leaf litter ant diversity in Madagascar. Ecological Applications 9: 714-731. htips://doi.org/10.1890/1051-0761 (1999)009[0714:IIEACS]2.0.C0;2 Fraga Rd, Stow A, Magnusson W, Lima A (2014) The costs of evaluating species densities and composition of snakes to assess development impacts in Amazonia. PLoS ONE 9 (8): e105453. https://doi.org/10.1371/journal.pone.0105453 Gibson L, Lee TM, Koh LP, Brook B, Gardner T, Barlow J, Peres C, Bradshaw CA, Laurance W, Lovejoy T, Sodhi N (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478 (7369): 378-381. httos://doi.org/10.1038/nature10425 Gotelli NJ, Ellison AM, Dunn RR, Sanders N (2011) Counting ants (Hymenoptera: Formicidae): biodiversity sampling and statistical analysis for myrmecologists. Myrmecological News 15: 13-19. Greenslade PJ, Greenslade P (1984) Invertebrates and environmental assessment. Environment and Planning 3: 13-15. Groc S, Delabie JH, Fernandez F, Leponce M, Orivel J, Silvestre R, Vasconcelos HL, Dejean A (2014) Leaf-litter ant communities (Hymenoptera: Formicidae) in a pristine Guianese rain-forest: stable functional structure versus high species turnover. Myrmecological News 19: 43-51. Guénard B (2013) An Overview of the Species and Ecological Diversity of Ants. eLS. https://doi.org/10.1002/9780470015902.a0023598 Hoffmann BD, Griffiths AD, Andersen AN (2000) Responses of ant communities to dry sulfur deposition from mining emissions in semi-arid tropical Australia, with implications for the use of functional groups. Austral Ecology 25: 653-663. htips://doi.org/10.1111/ j.1442-9993.2000.tb00071.x Hélldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge, 732 Pp. Humphreys GS (1981) The rate of ant mounding and earthworm casting near Sydney. N.S.W. Search 12: 129-131. Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agriculture, Ecosystems, and Environment 24: 101-116. https:// doi.org/10.1016/0167-8809(88)90059-X Lamoreux J, Morrison J, Ricketts T, Olson D, Dinerstein E, McKnight M, Shugart H (2005) Global tests of biodiversity concordance and the importance of endemism. Nature 440 (7081): 212-214. https://doi.org/10.1038/nature04291 Latrubesse E, Arima E, Dunne T, Park E, Baker V, d’Horta F, Wight C, Wittmann F, Zuanon J, Baker P, Ribas C, Norgaard R, Filizola N, Ansar A, Flyvbjerg B, Stevaux J (2017) Damming the rivers of the Amazon basin. Nature 546 (7658): 363-369. httops:// doi.org/10.1038/nature22333 Levieux J (1983) The soil fauna of tropical savannas. IV. The ants Tropical Savannas. Elsevier. In: Bourliere F (Ed.) Tropical Savannas. Amsterdam, Holland, 525-540 pp. Lobry de Bruyn L, Conacher A (1994) The bioturbation activity of ants in agricultural and naturally vegetated habitats in semi-arid environments. Australian Journal of Soil Research 32: 555-570. https://doi.org/10.1071/SR9940555 Magnusson WE, Lima AP, Luizao R, Luizao F, Costa FR, Castilho CV, Kinupp VF (2005) Rapeld: a modification of the gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica 5: 1-6. 28 Fernandes |, de Souza J Magnusson WE, Braga-Neto R, Pezzini F, Baccaro FB, Bergallo H, Penha J, Rodrigues D, Verdade LM, Lima A, Albernaz AL, Hero JM, Lawson B, Castilho CV, Drucker DP, Franklin E, Mendonga FP, Costa FR, Galdino G, Castley G, Zuanon J, Vale J, Santos JL, Luizao FJ, Cintra R, Barbosa RI, Lisboa A, Koblitz R (2013) Biodiversidade e Monitoramento Ambiental Integrado. In: Editorial (Ed.) Biodiversity and Integrated Environmental Monitoring. Manaus. Majer JD (1983) Ants: bio-indicators of minesite rehabilitation, land-use, and land conservation. Environmental Management 7: 375-385. htips://doi.org/10.1007/ BF01866920 Margules CR, Pressey RL, Williams PH (2002) Representing biodiversity: data and procedures for identifying priority areas for conservation. Journal Bioscience 27: 309-326. https://doi.org/10.1007/BF02704962 McGeoch MA (1998) The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews 73: 181-201. htips://doi.org/10.1017/ S000632319700515X Moser P, Oliveira W, Medeiros M, Pinto J, Eisenlohr P, Lima |, Silva G, Simon M (2014) Tree species distribution along environmental gradients in an area affected by a hydroelectric dam in southern Amazonia. Biotropica 46 (3): 367-376. htips:// doi.org/10.1111/btp.12111 Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, B. H, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579-583. https://doi.org/10.1038/21181 Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269 (5222): 347-350. https://doi.org/10.1126/science.269.5222.347 Sa-Oliveira J, Hawes J, Isaac-Nahum V, Peres C (2015) Upstream and downstream responses of fish assemblages to an eastern Amazonian hydroelectric dam. Freshwater Biology 60 (10): 2037-2050. https://doi.org/10.1111/fwb.12628 Sarkar S, Margules C (2002) Operationalizing biodiversity for conservation planning. Journal of Biosciences 27: 299-308. hiips://doi.org/10.1007/BF02704961 Turner MG, Arthaud GJ, Engstrom RT, Hejl SJ, Liu J, Loeb S, McKelvey K (1995) Usefulness of spatially explicit population models in land managemnet. Ecological Applications 5: 12-16. URL: http:/Awww.jstor.org/stable/1942046 Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: If, when, and how. Biological Conservation 132: 166-182. httos://doi.org/10.1016/ j.biocon.2006.03.022 Vitousek PM (1997) Human domination of Earth's ecosystems. Science 277 (5325): 494-499. https://doi.org/10.1126/science.277.5325.494 Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny MLJ, Silvano RAM, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Vilara GT, Snoeks J, Ou C, Rainboth W, Pavanelli CS, Akama A, Soesbergen Av, Saenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351 (6269): 128-129. https:// doi.org/10.1126/science.aac7082 Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) ... 29 ° York A (2000) Long-term effects of frequent low-intensity burning on ant communities in coastal blackbutt forests of southeastern Australia. Austral Ecology 25: 83-98. htips:// doi.org/10.1046/j.1442-9993.2000.01014.x Supplementary materials Suppl. material 1: A total of 253 events of collection in the influence areas of Santo Antonio Hydroelectric Power-Plant. EI Authors: Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza Data type: metadata (DwC-A) event Filename: Event_collection.xlsx - Download file (91.17 kb) Suppl. material 2: A total of 9.165 occurrences in the influence areas of Santo Anténio Hydroelectric Power-Plant. EZ Authors: Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza Data type: metadata (DwC-A) occurences Filename: Occurrence_species:morphospecieslist.xlsx - Download file (1.71 MB)