<8) MycoKeys MycoKeys 113: 263-294 (2025) DOI: 10.3897/mycokeys.113.140624 Research Article Molecular phylogeny and taxonomy reveal two new genera and five new species in Phanerochaetaceae (Polyporales) from Yunnan, Southwest China Ying Xu'®, Yang Yang™®, Xin Yang'®, Daxiang Chen”, Wen Zheng®, Kaize Shen®®, Sicheng Zhang"™, Changlin Zhao'?® 1 College of Forestry, Southwest Forestry University, Kunming 650224, China 2 Tongbiguan Provincial Nature Reserve, Mangshi 678499, China 3 Key Laboratory of Forest Disaster Warning and Control in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China Corresponding author: Changlin Zhao (fungi@swfu.edu.cn; fungichanglinz@163.com) OPEN Qaccess This article is part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam Academic editor: Samantha C. Karunarathna Received: 30 October 2024 Accepted: 11 January 2025 Published: 12 February 2025 Citation: Xu Y, Yang Y, Yang X, Chen D, Zheng W, Shen K, Zhang S, Zhao C (2025) Molecular phylogeny and taxonomy reveal two new genera and five new species in Phanerochaetaceae (Polyporales) from Yunnan, Southwest China. Mycokeys 113: 263-294. https://doi. org/10.3897/mycokeys.113.140624 Copyright: © Ying Xu et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract In the present study, two new genera Paradonkia, and Neodonkiella, and five new species, viz. Paradonkia farinacea, Neodonkiella yinjiangensis, Phanerochaete al- bocremea, Phanerochaete fissurata, and Phanerochaete punctata collected from southern China, are proposed based on a combination of morphological features and molecular evidence. Paradonkia farinacea is characterized by the resupinate, membranaceous basidiomata with pale cream to gray cream hymenial surface and a monomitic hyphal system with simple septa and clamp connections; Neodonkiella yinjiangensis is characterized by soft coriaceous basidiomata, a monomitic hyphal system and ellipsoid basidiospores (3.5—5 x 2—2.5 um); Phanerochaete albocremea is characterized by resupinate basidiomata with white to a pale cream hymenial sur- face, and ellipsoid basidiospores (3.5—5 x 2-3 um); Phanerochaete fissurata is char- acterized by gray-brown and cracked hymenial surface, and ellipsoid basidiospores (4—5.5 x 2-3 um) and Phanerochaete punctata is characterized by farinaceous ba- sidiomata, a monomitic hyphal system, and ellipsoid basidiospores. Sequences of the internal transcribed spacers (ITS) and the large subunit (nLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phyloge- netic analyses were performed using the maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogram based on the ITS+nLSU rDNA gene regions, revealed that two new genera, Paradonkia and Neodonkiella, belong to the family Phanerochaetaceae, and three new species belong to the genus Phaneroch- aete in the family Phanerochaetaceae. Key words: Biodiversity, fungal classification, new taxa, wood-inhabiting fungi, Yunnan Province Introduction Fungi, as eukaryotic microorganisms, are pivotal in ecological ecosystems, serving aS decomposers and mutualists of both dead and living plants and animals. They are key players in carbon cycling in forest soils, mediating the 263 Ying Xu et al.: Fungal deversity mineral nutrition of plants, and alleviating the carbon limitations of other soil or- ganisms (Cui et al. 2019; James et al. 2020; Liu et al. 2023; Zhao et al. 2023b). Wood-inhabiting fungi, with their distinct and diverse characteristics, form an ecologically important branch of the tree of life, further underlining their signif- icance (Dai et al. 2021; Yang et al. 2024). The family Phanerochaetaceae Julich, belonging to the order Polypora- les (Basidiomycota), was typified by Phanerochaete P. Karst. Twenty-five genera were placed in this family Phanerochaetaceae as Alboefibula C.C. Chen & Sheng H. Wu, Bjerkandera P. Karst., Callosus C.L. Zhao, Cremeoder- ma Sheng H. Wu & C.C. Chen, Crepatura C.L. Zhao, Donkia Pilat, Donkiella J.H. Dong & C.L. Zhao, Efibulella Zmitr., Gelatinofungus Sheng H. Wu, et al., Geliporus Yuan Yuan, et al., Hapalopilus P. Karst., Hyphodermella J. Erikss. & Ryvarden, Odontoefibula C.C. Chen & Sheng H. Wu, Oxychaete Miettinen, Phaeophlebiopsis Floudas & Hibbett, Phanerina Miettinen, Phanerochaete P. Karst., Phlebiopsis Julich, Pirex Hjortstam & Ryvarden, Porostereum Pilat, Quasiphlebia C.C. Chen & Sheng H. Wu, Rhizochaete Gresl., Nakasone & Ra- jchenb., Riopa D.A. Reid, Roseograndinia Hjortstam & Ryvarden and Terana Adans according to recent studies (Dong et al. 2024; He et al. 2024). In Pha- nerochaetaceae morphology, the corticioid species are predominant, along with a few resupinate polypores and hydnaceous species (Chen et al. 2021). The hyphal system of this family is usually monomitic, rarely dimitic, and the generative hyphae are usually simple septa, rarely nodose-septate, and cys- tidia are often present, and basidiospores are usually thin-walled, smooth, and colorless (Justo et al. 2017; Chen et al. 2021). The genus Phanerochaete P. Karst., belonging to the family Phanerochae- taceae (Polyporales, Basidiomycota), was typified by P. alnea (Fr.) P. Karst (Deng et al. 2024). It is characterized by the membranaceous, smooth hy- menial surface (some are tuberculate, odontioid-hydnoid, or merulioid-po- roid), mostly monomitic hyphal system, simple septa generative hyphae or with rare clamp connections in the subiculum, clavate basidia and ellipsoid to cylindrical, thin-walled and smooth basidiospores, which are inamyloid and non-dextrinoid (Wu et al. 2018). The colorless subiculum is present in most species, but a brownish subiculum also occurs (Chen et al. 2021). Based on the MycoBank database (http://www.MycoBank.org, accessed on 06 January 2025) and the Index Fungorum (www.indexfungorum.org; ac- cessed on 06 January 2025), 208 names are registered in the genus Phaner- ochaete but 121 species have been accepted worldwide (Chen et al. 2021; Wang and Zhao 2021; Yu et al. 2023; Deng et al. 2024; Dong et al. 2024; Luo et al. 2024). During investigations on wood-inhabiting fungi in the Yunnan-Guizhou Pla- teau, China, many wood-inhabiting fungal specimens were collected. To clarify the placement and relationships of these specimens, we carried out a phylo- genetic and taxonomic study based on the ITS+nLSU sequences. These spec- imens were assigned to the family Phanerochaetaceae. Therefore, two new genera, Paradonkia, and Neodonkiella, and five new species, Paradonkia fari- nacea, Neodonkiella yinjiangensis, Phanerochaete albocremea, Phanerochaete fissurata, and Phanerochaete punctata are proposed with descriptions, and il- lustrations, and phylogenetic analysis results. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 264 Ying Xu et al.: Fungal deversity Materials and methods Sample collection and herbarium specimen preparation The fresh fruiting bodies were collected on the fallen angiosperm branches and stumps and dead bamboo from Yunnan Province, China. The samples were photo- graphed in situ, and important collection information was noted (Rathnayaka et al. 2024) and macroscopic characteristics were recorded. Photographs were record- ed by a Nikon D7100 camera. All the photos were focus-stacked using Helicon Fo- cus software. Macroscopic details were recorded and transported to a field station where the fruit body was dried on an electronic food dryer at 40 °C (Hu et al. 2022), and once dried, the specimens were sealed in an envelope and zip-lock plastic bags and labelled (Zhao et al. 2023a). The dried specimens were deposited in the Herbari- um of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. Morphology The macromorphological descriptions were based on field notes and photos cap- tured in the field and lab. The color terminology follows Petersen (1996). The mi- cromorphological data were obtained from the dried specimens after observation under a light microscope with a magnification of 10 x 100 oil (Zhao et al. 2023a). Sections were mounted in 5% potassium hydroxide (KOH) and Congo red solution, and we also used other reagents, including Cotton Blue and Melzer's reagent, to ob- serve micromorphology following previous studies (Moreno et al. 2017; Dong et al. 2024; Wang et al. 2024). To show the variation in spore sizes, 5% of measurements were excluded from each end of the range and shown in parentheses. At least thir- ty basidiospores from each specimen were measured. Stalks were excluded from basidia measurements and the hilar appendage was excluded from basidiospores measurements. The following abbreviations are used: KOH = 5% potassium hy- droxide water solution, CB = Cotton Blue, CB- = acyanophilous, IKI = Melzer's re- agent, IKI- = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (num- ber of spores (a) measured from a given number (b) of specimens). Molecular phylogeny The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain genomic DNA from the dried specimens ac- cording to the manufacturer's instructions. The ITS region was amplified with ITS5 and ITS4 primers (White et al. 1990). The nLSU region was amplified with the LROR and LR7 (Vilgalys and Hester 1990). The PCR procedure for ITS was as follows: ini- tial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR proce- dure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min, and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Kunming Ts- ingke Biological Technology Limited Company (Yunnan Province, PR. China). The newly generated sequences were deposited in NCBI GenBank (Table 1). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 265 Ying Xu et al.: Fungal deversity Table 1. Names, voucher numbers, localities, references, and corresponding GenBank accession numbers of the taxa used in this study. [New species are shown in bold; * refers to type material]. GenBank Accession No. Species Name Sample No. References ITS nLSU Country Alboefibula bambusicola Chen 2304 MZ636926 | MZ637091 China Chen et al. (2021) Alboefibula gracilis Wu 1809-106 MZ636929 | MZ637094 China Chen et al. (2021) Artomyces niveus CLZhao 19094 OR094479 | OR461459 China Dong et al. (2024) Bjerkandera adusta HHB-12826-Sp KP134983 | KP135198 USA Floudas and Hibbett (2015) Bjerkandera centroamericana L-13104-sp KY948791 | KY948855 | Costa Rica Justo et al. (2017) Callosus wenshanensis CLZhao 16017 MW553934 | MW553936 China Chen et al. (2022) Callosus wenshanensis CLZhao 16034 MW553935 | MW553937 China Chen et al. (2022) Cremeoderma unicum Wu 1707-94 MZ636939 | MZ637102 China Chen et al. (2021) Cremeoderma unicum Wu 1707-100 MZ636938 | MZ637101 China Chen et al. (2021) Crepatura ellipsospora CLZhao 1265 MK343692 | MK343696 China Ma and Zhao (2019) Crepatura ellipsospora CLZhao 1260 MK343693 | MK343697 China Ma and Zhao (2019) Crepatura ellipsospora CLZhao 126 MK343692 | MK343696 China Ma and Zhao (2019) Donkia pulcherrima GC 1707-11 LC378994 | LC379152 China Chen et al. (2018) Donkia pulcherrima Gothenburg-2022 | KX752591 | KX752591 Austria Miettinen et al. (2016) Donkiella yunnanensis CLZhao 3931 OR094482 | OR461467 China Dong et al. (2024) Donkiella yunnanensis CLZhao 18292 OR094483 | OR461468 China Dong et al. (2024) Efibulella deflectens FCUG 1568 AF141619 | AF141619 Sweden Parmasto and Hallenberg (2000) Gelatinofungus brunneus GC 1703-31 LC387339 | LC387344 China Chen et al. (2018) Gelatinofungus brunneus Wu 1207-162 MZ636978 | MZ637139 China Chen et al. (2021) Geliporus exilisporus Dai 2172 KU598211 | KU598216 China Yuan et al. (2017) Geliporus exilisporus GE1702-15 LC378995 | LC379153 China Chen et al. (2018) Hapalopilus percoctus H 7008581 KX752597 | KX752597 Botswana Miettinen et al. (2016) Hapalopilus rutilans FP-102473-Sp MZ636981 | MZ637142 USA Chen et al. (2021) Hyphodermella corrugata MA-Fungi 24238 FN600378 | JN939586 Portugal Telleria et al. (2010) Hyphodermella rosae GC 1604-113 MZ636986 | MZ637147 China Chen et al. (2021) Odontoefibula orientalis Wu 0910-57 LC363490 | LC363495 China Chen et al. (2018) Odontoefibula orientalis GC 1703-76 LC379004 | LC379156 China Chen et al. (2018) Oxychaete cervinogilva GC 1501-16 MZ422783 | MZ637173 China Chen et al. (2021) Oxychaete cervinogilva Dmitry Schigel 5216 | KX752596 | KX752596 Australia Chen et al. (2021) Paradonkia farinacea CLZhao 27184* PQ527890 | PQ527887 China Present study Paradonkia farinacea CLZhao 27221 PQ527891 | PQ527888 China Present study Neodonkiella yinjiangensis CLZhao 30585* PQ527892 | PQ527889 China Present study Phaeophlebiopsis caribbeana HHB-6990 KP135415 | KP135243 USA Floudas and Hibbett (2015) Phaeophlebiopsis peniophoroides AP S0577. KP135417 | KP135273 USA Floudas and Hibbett (2015) Phanerina mellea Wu 1010-34 MZ422784 | MZ637176 China Chen et al. (2021) Phanerina mellea WEI 17-224 LC387333 | LC387340 China Chen et al. (2018) Phanerochaete aculeata Wu 1809-278 MZ422786 | MZ637178 China Chen et al. (2021) Phanerochaete aculeata GC 1703-117 MZ422785 | MZ637177 China Chen et al. (2021) Phanerochaete albida WEI 18-365 MZ422789 | MZ637180 China Chen et al. (2021) Phanerochaete albida GC 1407-14 MZ422788 | MZ637179 China Chen et al. (2021) Phanerochaete albocremea CLZhao 31998 PQ454009 | PQ454675 China Present study Phanerochaete albocremea CLZhao 32032 PQ454010 | PQ454676 China Present study Phanerochaete albocremea CLZhao 32035 PQ454011 | PQ454677 China Present study Phanerochaete albocremea CLZhao 32235* PQ454012 = China Present study Phanerochaete alnea Larsson 12054 KX538924 = Norway Spirin et al. (2017) Phanerochaete alpina Wu 1308-61 MZ422790 | MZ637182 China Chen et al. (2021) Phanerochaete alpina Wu 1308-77 MZ422791 | MZ637183 China Chen et al. (2021) Phanerochaete arizonica RLG-10248-Sp KP135170 | KP135239 USA Floudas and Hibbett (2015) Phanerochaete australis He 6013 MT235656 | MT248136 China Phookamsak et al. (2019) Phanerochaete australis HHB-7105-Sp KP135081 | KP135240 USA Floudas and Hibbett (2015) MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 266 Ying Xu et al.: Fungal deversity Species Name Phanerochaete australosanguinea Phanerochaete australosanguinea Phanerochaete bambusicola Phanerochaete bambusicola Phanerochaete brunnea Phanerochaete burdsallii Phanerochaete burtii Phanerochaete burtii Phanerochaete calotricha Phanerochaete canobrunnea Phanerochaete canobrunnea Phanerochaete carnosa Phanerochaete carnosa Phanerochaete chrysosporium Phanerochaete chrysosporium Phanerochaete cinerea Phanerochaete cinerea Phanerochaete citrinosanguinea Phanerochaete citrinosanguinea Phanerochaete concrescens Phanerochaete concrescens Phanerochaete crystallina Phanerochaete crystallina Phanerochaete cumulodentata Phanerochaete cumulodentata Phanerochaete cystidiata Phanerochaete cystidiata Phanerochaete ericina Phanerochaete ericina Phanerochaete fissurata Phanerochaete fissurata Phanerochaete fusca Phanerochaete fusca Phanerochaete granulata Phanerochaete granulata Phanerochaete granulata Phanerochaete guangdongensis Phanerochaete guangdongensis Phanerochaete hainanensis Phanerochaete hymenochaetoides Phanerochaete incarnata Phanerochaete incarnata Phanerochaete laevis Phanerochaete laevis Phanerochaete leptocystidiata Phanerochaete leptocystidiata Phanerochaete livescens Phanerochaete metuloidea Phanerochaete minor Phanerochaete mopanshanensis Phanerochaete parmastoi Phanerochaete parmastoi Phanerochaete porostereoides Phanerochaete porostereoides Sample No. MA:Fungi:91308 MA:Fungi:91309 He 3606 Wu 0707-2 He 4192 He 2066 HHB-4618-Sp FD-171 Vanhanen382 He 5726 CHWC1506-66 He 5172 HHB-9195 He 5778 HHB-6251-Sp He 5998 He 6003 FP-105385-Sp FD-287 He 4657 Spirin 7322 Chen 3823 Chen 3576 He 2995 LE:298935 He 4224 Wu 1708-326 HHB-2288 He 4285 CLZhao 35311* CLZhao 35321 Wu1 409-163 Wu 1409-161 Chen 2835 GC 1703-5 Wu 9210-57 Wu 1809-348 Wu 1809-319 He 3562 He 5988 He 20120728-1 WEI 16-075 He 20120917-8 HHB-15519 He 5853 Dai 10468 He 5010 He 2766 He 3988 CLZhao 2357 He 4570 Wu 880313-6 He 1902 He 1908 GenBank Accession No. ITS MH233925 MH233926 MT235657 MF399404 MT235658 MT235690 KP1354,17 KP135116 KP135107 MT235659 LC412095 MT235660 KP135129 MT235661 KP135094 KP135100 KP135095 MT235662 KP994380 MZ422802 MZ422801 MT235664 KP994359 MT235665 LC412097 KP 135167 MT235666 PQ454013 PQ454014 LC412099 LC412098 MZ422808 MZ422809 MZ422810 MZ422813 MZ422811 MT235692 MT235669 MF399406 MT235670 KP135149 MT235685 MT235684 MT235671 MT235682 MT235686 ORO96190 MT235673 MZ422823 KX212217 KX212218 MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 nLSU MH233928 MH233929 MT248137 MF399395 MT248138 MT248177 KP135241 MT248139 LC412104 MT248140 KP135242 MT248141 KP135246 MT248171 MT248172 MT248142 KP994382 MT248144 KP994386 MT248145 LC412100 KP135247 MT248146 PQ454678 PQ454679 LC412106 LC412105 MZ637194 MZ637195 MZ637196 MZ637199 MZ637197 MT248179 MT248173 MT248149 MF399397 MT248150 KP135249 MT248168 MT248167 MT248151 MT248164 MT248170 OR461450 MT248153 GQ470654 KX212221 KX212222 Country Chile Chile China China China USA USA USA Finland SriLanka China China USA SriLanka USA China: China USA USA China Russia China China China Russia China China USA China China China China China: China China China China China China China China China China USA China China China China China China China China China China References Phookamsak et al. (2019) Phookamsak et al. (2019) Xu et al. (2020) Wu et al. (2017) Xu et al. (2020) Xu et al. (2020) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Wu et al. (2017) Xu et al. (2020) Xu et al. (2020) Floudas and Hibbett (2015) Xu et al. (2020) Floudas and Hibbett (2015) Xu et al. (2020) Xu et al. (2020) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Chen et al. (2021) Volobuev et al. (2015) Chen et al. (2021) Chen et al. (2021) Phookamsak et al. (2019) Volobuev et al. (2015) Xu et al. (2020) Wu et al. (2018) Floudas and Hibbett (2015) Xu et al. (2020) Present study Present study Wu et al. (2018) Wu et al. (2018) Chen et al. (2021) Chen et al. (2021) Chen et al. (2021) Chen et al. (2021) Chen et al. (2021) Boonmee et al. (2021) Xu et al. (2020) Xu et al. (2020) Wu et al. (2017) Xu et al. (2020) Floudas and Hibbett (2015) Xu et al. (2020) Xu et al. (2020) Xu et al. (2020) Xu et al. (2020) Xu et al. (2020) Dong et al. (2024) Xu et al. (2020) Chen et al. (2021) Liu and He (2016) Liu and He (2016) 267 Ying Xu et al.: Fungal deversity Species Name Phanerochaete pruinosa Phanerochaete pruinosa Phanerochaete pseudosanguinea Phanerochaete punctata Phanerochaete punctata Phanerochaete rhizomorpha Phanerochaete rhizomorpha Phanerochaete rhodella Phanerochaete robusta Phanerochaete robusta Phanerochaete sanguineocarnosa Phanerochaete sanguineocarnosa Phanerochaete sinensis Phanerochaete sinensis Phanerochaete sordida Phanerochaete spadicea Phanerochaete spadicea Phanerochaete stereoides Phanerochaete stereoides Phanerochaete subcarnosa Phanerochaete subcarnosa Phanerochaete subceracea Phanerochaete subceracea Phanerochaete subrosea Phanerochaete subsanguinea Phanerochaete subsanguinea Phanerochaete subtropica Phanerochaete subtropica Phanerochaete subtuberculata Phanerochaete subtuberculata Phanerochaete taiwaniana Phanerochaete taiwaniana Phanerochaete tongbiguanensis Phanerochaete velutina Phanerochaete velutina Phanerochaete yunnanensis Phanerochaete yunnanensis Phlebiopsis gigantea Phlebiopsis crassa Phlebiopsis galochroa Pirex concentricus Pirex concentricus Porostereum fulvum Porostereum spadiceum Quasiphlebia densa Quasiphlebia densa Rhizochaete filamentosa Rhizochaete radicata Riopa metamorphosa Riopa pudens Roseograndinia jilinensis Roseograndinia minispora Terana caerulea Terana caerulea Sample No. CLZhao 7112 CLZhao 7113 FD-244 CLZhao 30365 CLZhao 30512* GC 1708-335 GC 1708-354 FD-18 Wu 1109-69 MG265 FD-359 FD-528 He 4660 GC1809-56 FD-241 Wu 0504-15 Wu 0504-11 He 5824 He 2309 Wu 9310-3 GC 1809-90 FP-105974-R HHB-9434 He 2421 CLZhao 10470 CLZhao 10477 CLZhao F8716 CLZhao F2763 CLZhaoF5130 CLZhaoF6838 He 5269 Wu 0112-13 CLZhao 30606 He 3079 Kotiranta 25567 He 2719 He 2697 FP-70857 KKN-86 FP-102937 Kropp160Bup6-R OSC-41587 LY:18491 Wu 9508-139 WEI 17-057 Wu 9304-33 HHB-3169 FD-123 Spirin 2395 Dai 19241 Wu 1307-137 WEI 18-511 FP-104073 GC 1507-2 GenBank Accession No. ITS MZ435346 MZ435347 KP135098 PQ454015 PQ454016 MZ422824 MZ422825 KP135187 MF399409 KP127068 KP135122 KP135121 MT235688 MT235689 KP135136 MZ422837 MZ422836 MT235677 KX212219 MZ422841 MZ422840 KP135162 KP135163 MT235687 MZ435348 MZ435349 OP605486 OP605518 OP605484 OP605485 MT235680 MF399412 OR917875 MT235681 KP994354 MT235683 KP135390 KP135394 KP135391 KP134985 KP134984 MG649452 MZ637062 MZ637066 MZ637067 KP135410 KP135407 KX752601 OL470307 MZ637077 MZ637079 KP134980 MZ637090 MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 nLSU MZ435350 MZ435351 KP135251 PQ454680 PQ454681 MZ637208 MZ637209 KP135258 MF399400 KP127069 KP135245 MT248175 MT248176 KP135252 MZ637219 MT248158 KX212223 GQ470642 MZ637222 KP135255 MT248174 MZ435352 MZ435353 0Q195089 0Q195090 0Q195088 0Q195087 MT248161 MF399403 OR921222 MT248162 KP994387 MT248166 MT248165 KP135272 KP135215 KP135270 KP135275 MG649454 MZ637263 MZ637265 MZ637266 KP135278 KP135279 KX75260 OL462822 MZ637275 MZ637277 KP135276 MZ637287 Country China China USA China China China China USA China China USA USA China China USA China China SriLanka China China China USA USA China China China China China China China Vietnam China China China Russia China China USA USA USA USA USA France China USA China USA USA Russia China China China USA China References Wang and Zhao (2021) Wang and Zhao (2021) Floudas and Hibbett (2015) Present study Present study Chen et al. (2021) Chen et al. (2021) Floudas and Hibbett (2015) Wu et al. (2018) Ghobad-Nejhad et al. (2015) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Xu et al. (2020) Xu et al. (2020) Floudas and Hibbett (2015) Chen et al. (2021) Chen et al. (2021) Xu et al. (2020) Liu and He (2016) Chen et al. (2021) Chen et al. (2021) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Xu et al. (2020) Wang and Zhao (2021) Wang and Zhao (2021) Yu et al. (2023) Yu et al. (2023) Yu et al. (2023) Yu et al. (2023) Xu et al. (2020) Chen et al. (2021) Deng et al. (2024) Xu et al. (2020) Volobuev et al. (2015) Xu et al. (2020) Xu et al. (2020) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Justo et al. 2017 Floudas and Hibbett (2015) Floudas and Hibbett (2015) Unpublished Chen et al. (2021) Chen et al. (2021) Chen et al. (2021) Floudas and Hibbett (2015) Floudas and Hibbett (2015) Miettinen et al. (2016) Unpublished Chen et al. (2021) Chen et al. (2021) Floudas and Hibbett (2015) Chen et al. (2021) 268 Ying Xu et al.: Fungal deversity * Holotype 79/90/0.98 -/100/- Terana caerulea FP-104073 USA Terana 96/100/1.00 L_ Terana caerulea GC 1507-2 China 100/100/1.00 Porostereum spadiceum Wu 9508-139 China Porostereum Porostereum fulvum LY:18491 France 100/100/1.00 Bjerkandera adusta HHB-12826-Sp USA ° TOOMOBAKOG Bjerkandera centroamericana L-13104-sp Costa Rica Bj erkandera Artomyces niveus CLZhao 19094 China Ou tgroup sO Poles alian Neodonkiella yinjiangensis CLZhao 30585 China [N eodonkiella Roseograndinia jilinensis Wu 1307-137 China Roseograndinia Roseograndinia minispora WEI 18-511 China Hyphodermella rosae GC 1604-113 China | Hyphodermella Hyphodermella corrugata MA-Fungi 24238 Portuga Geliporus exilisporus Dai 2172 Set | Geliporus Geliporus exilisporus GC 1702-15 China Odontoefibula orientalis Wu 0910-57 China | Odontoefibula 100/100/1.00 | Odontoefibula orientalis GC 1703-76 China Quasiphlebia densa WEI 17-057 USA Quasiphlebia one Quasiphlebia densa Wu 9304-33 China 100/100/1.00 Hapalopilus rutilans FP-102473-Sp USA | Hapalopilus -/-10.97 Hapalopilus percoctus H 7008581 Botswana Phaeophlebiopsis caribbeana HHB-6990 USA Phaeophlebiopsis 57) — 99/96/1.00 Phaeophlebiopsis peniophoroides FP-150577 USA Rhizochaete radicata FD-123 USA | Rhizochaete -/95/1.00 82/72/1200 Rhizochaete filamentosa HHB-3169 USA Phlebiopsis crassa KKN-86 USA ie & Vee Phlebiopsis galochroa FP-102937 USA | Phlebiopsis 83/88/1.00 ety te ATS Phlebiopsis gigantea FP-70857 USA Cremeoderma unicum Wu 1707-94 China | Cremeoderma 100/100/1.00 | Cyemeoderma unicum Wu 1707-100 China Gelatinofungus brunneus GC 1703-31 China | Gelatinofungus 100/100/100 L Gelatinofungus brunneus Wu 1207-162 China Phanerochaete alnea Larsson 12054 Norway | Phanerochaete Phanerochaete australis HHB-7105-Sp USA 4 Oxychaete cervinogilva GC 1501-16 China Oxychaete Oxychaete cervinogilva Dmitry Schigel 5216 Australia - rite Phanerina mellea Wu 1010-34 China | Phanerina The sequences were aligned in MAFFT v. 7 using the G-INS-i strategy (Katoh et al. 2019). The alignment was adjusted manually using AliView v. 1.27 (Lars- son 2014). The dataset was aligned first, and then the sequences of ITS+nLSU were combined with Mesquite v. 3.51. The combined ITS+nLSU sequences were used to infer the position of the new species and closely related species. The se- quence of Artomyces niveus J.H. Dong & C.L. Zhao obtained from GenBank was used as an outgroup to root trees in the ITS+nLSU analysis (Fig. 1) in the family Phanerochaetaceae (Dong et al. 2024). The sequence of Crepatura ellipsospora C.L. Zhao obtained from GenBank was used as an outgroup to root trees in the ITS+nLSU analysis (Fig. 2) in the genus Phanerochaete (Ma and Zhao 2019). 100/98/1.00. Alboefibula bambusicola Chen 2304 China | hoe ofibu ie 87/71/- Alboefibula gracilis Wu 1809-106 China Crepatura ellipsospora CLZhao 1265 China | C. Crepatura ellipsospora CLZhao 1260 China Fep. atura Pirex concentricus Kropp160Bup6-R USA Pirex 100/100/1.00 | Pirex concentricus OSC-41587 USA Efibulella defectens FCUG 1568 Sweden i E ‘fibulella 100/100/1.00 ; Paradonkia farinacea CLZhao 27184 China * . Paradonkia farinacea CLZhao 27221 China Paradonkia Donkia pulcherrima GC 1707-11 China Donkia 100/100/1.00 | Donkia pulcherrima Gothenburg-2022 Austria Donkiella yunnanensis CLZhao 3931 China Donkiella Donkiella yunnanensis CLZhao 18292 China 100/100/1.00 100/100/11.00 | Phanerina mellea WEI 17-224 China 100/100/1.00 (7 Callosus wenshanensis CLZhao 16034 China | Callosus Callosus wenshanensis CLZhao 16017 China Riopa pudens Dai 19241China Riopa 00/100/1.00 Riopa metamorphos Spirin 2395 Russia Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of Paradonkia and Neodonkiella and re- lated genera in the family Phanerochaetaceae based on ITS+nLSU sequences. Branches are labelled with maximum likelihood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. Colored bars represent different genera. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 269 Ying Xu et al.: Fungal deversity 100/100/1.00 -- Phanerochaete robusta Wu 1109-69 China Ee citoe robusta MG265 China Phanerochaete minor He 3988 China * Holotype Phanerochaete brunnea He 4192 China '— Phanerochaete subrosea He 2421 China Phanerochaete albocremea CLZhao 32235 China * Phanerochaete albocremea CLZhao 31998 China Phanerochaete albocremea CLZhao 32032 China Bey Phanerochaete albocremea CLZhao 32035 China Phanerochaete porostereoides He1902 China Phanerochaete porostereoides He1908 China Phanerochaete fusca Wu1409-163 China Phanerochaete fusca Wu 1409-161 China: 100/96)... Phanerochaete pruinosa CLZhao 7112 China Phanerochaete pruinosa CLZhao 7113 China Phanerochaete yunnanensis He 2697 China Phanerochaete yunnanensis He 2719 China [99 Phanerochaete granulata Chen 2835 China Phanerochaete granulata GC 1703-5 China WS remeroanee re granulata Wu 9210-57 China 99/98/10 hanerochaete parmastoi He 4570 China Phanerochaete parmastoi Wu 880313-6 China Phanerochaete incarnata He 20120728-1 China Phanerochaete incarnata WEI 16-075 China Phanerochaete canobrunnea He 5726 SriLanka Phanerochaete canobrunnea CHWC 1506-66 China 100/95/1,0 9977710.98 | 100/100/1. So HuER Phanerochaete hymenochaetoides He 5988 China 100/93/1.00 100/96/po0: Phanerochaete cinerea He 6003 China Phanerochaete cinerea He 5998 China Spy Phanerochaete fissurata CLZha 7 100/89/0.' Phanerochaete fissurata CL2 r— Phanerochaete spadicea Wu 0504-11 China r| 0/92/1.00L Phanerochaete spadicea Wu 0504-15 China -— Phanerochaete stereoides He 5824 SriLanka 9999/0. Phanerochaete stereoides He 2309 China Phanerochaete laevis He 20120917-8 China Phanerochaete laevis HHB-15519 USA Phanerochaete metuloidea He 2766 China Phanerochaete subcarnosa Wu 9310-3 China 00/100/1.00 Phanerochaete subcarnosa GC 1809-90 China 10b/o0/1.00 — Phanerochaete subceracea HHB-9434 USA Phanerochaete subceracea FP-105974-R USA Phanerochaete alpina Wu 1308-61 China Phanerochaete alpina Wu 1308-77 China Phanerochaete cystidiata Wu 1708-326 China Phanerochaete cystidiata He 4224 China |; Phanerochaete ericina HHB-2288 USA Phanerochaete ericina He 4285 China Phanerochaete burdsallii He 2066 USA Phanerochaete guangdongensis Wu 1809-348 China Phanerochaete guangdongensis Wu 1809-319 China Ph an ero ch aete 92/7 301.00 5 Phanerochaete cumulodentata LE:298935 Russia Phanerochaete cumulodentata He 2995 China 97/96/Q.p 100/94/1.0} 100/92/1.00 | Phanerochaete aculeata GC 1703-117 China Phanerochaete bambusicola Wu 0707-2 China Phanerochaete bambusicola He 3606 China Phanerochaete australis He 6013 China Phanerochaete australis HHB-7105-Sp USA 10b/44/1 Phanerochaete livescens He 5010 China Phanerochaete concrescens H Spirin 7322 Russia Phanerochaete concrescens He 4657 China 9 Phanerochaete chrysosporium He 5778 SriLanka Phanerochaete chrysosporium HHB-6251-Sp USA - Phanerochaete crystallina Chen 3823 China Phanerochaete crystallina Chen 3576 China 100/9270-49 . Phanerochaete subtuberculata CLZhaoF5130 China 00/100/1.00 L_ Phanerochaete subtuberculata CLZhaoF6838 China 00/1 9 Phanerochaete taiwaniana He 5269 Vietnam E Phanerochate taiwaniana Wu 0112-13 China Phanerochaete arizonica RLG-10248-Sp USA 100/100/1.0¢ Phanerochaete leptocystidiata He 5853 China Phanerochaete leptocystidiata Dai 10468 China Phanerochaete sinensis He4660 China 10/80/10 Phanerochaete sinensis GC1809-56 China -Phanerochaete burtii HHB-4618-Sp USA 100/99/1.00 L Phanerochaete burtii FD-171 USA 100/87/ pap banereciaate citrinosanguinea FD-287 USA | 10q/sq/- | Phanerochaete citrinosanguinea FP-105385-Sp USA 1 1.00-— Phanerochaete pseudosanguinea FD-244 USA Phanerochaete subsanguinea CLZhao 10470 China 100/100/1.00! Phanerochaete subsanguinea CLZhao 10477 China roo/toor oof Phanerochaete carnosa He 5172 China Phanerochaete carnosa HHB-9195 USA Phanerochaete australosanguinea MA:Fungi:9 1308 Chile 0/100/1.00L Phanerochaete australosanguinea MA:Fungi:91309 Chile Phanerochaete mopanshanensis CLZhao 2357 China iho/loo/1.09 Phanerochaete rhizomorpha GC 1708-335 China Phanerochaete rhizomorpha GC 1708-354 China Phanerochaete sanguineocarnosa FD-528 USA ‘ Phanerochaete sanguineocarnosa FD-359 USA Phanerochaete calotricha Vanhanen382 USA Phanerochaete hainanensis He 3562 China 100/100/100 rPhanerochaet punctata CLZhao 30365 China Phanerochaete punctata CLZhao 30512 China Phanerochaete subtropica CLZhao F8716 China Phanerochaete subtropica CLZhao F2763 China Phanerochaete tongbiguanensis CLZhao 30606 China Phanerochaete albida WEI 18-365 China -/S4/- 100/100/1.00 | Phanerochaete albida GC 1407-14 China eX Phanerochaete alnea Larsson 12054 Norway Sa Phamerochat velutina He 3079 China p80.98'L Phanerochaete velutina H:7022032 Kotiranta 25567 Russia | '— Phanerochaete rhodella FD-18 USA '— Phanerochaete sordida FD-241 USA sp. Crepatura ellipsospora CLZhao 1265 China = Outgroup 100/1 00/97 99/94/1.00 100/94/1.00 -/100/- Figure 2. Maximum parsimony strict consensus tree illustrating the phylogeny of three new species and related genera in the genus Phanerochaete based on ITS+nLSU sequences. Branches are labelled with maximum likelihood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 270 Ying Xu et al.: Fungal deversity Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian Infer- ence (BI) analyses were applied to the combined three datasets following a previous study (Zhao and Wu 2017) and the tree construction procedure was performed in PAUP* v. 4.0610 (Swofford 2002). All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics, tree length (TL), consistency index (Cl), retention index (RI), res- caled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated. The multiple sequence align- ment was also analyzed using Maximum Likelihood (ML) in RAxML-HPC2 on XSEDE v. 8.2.8 with default parameters (Miller et al. 2012). Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates. jModelTest v. 2 (Darriba et al. 2012) was used to determine the best-fit evolu- tion model for each dataset for the purposes of Bayesian Inference (BI), which was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substitu- tion and a gamma distribution rate variation across sites (Ronquist et al. 2012). The first one-quarter of all the generations were discarded as burn-in. The ma- jority-rule consensus tree of all the remaining trees was calculated. Branches were considered significantly supported if they received a Maximum Likelihood bootstrap value (BS) of = 70%, a Maximum Parsimony bootstrap value (BT) of = 50%, or Bayesian Posterior Probabilities (BPP) of = 0.95. Results Molecular phylogeny The Phanerochaetaceae aligned dataset comprised 54 specimens represent- ing 28 species. Four Markov chains were run for two runs from random start- ing trees, each for three million generations for the combined ITS+nLSU (Fig. 1) dataset with trees and parameters sampled every 1,000 generations. The dataset had an aligned length of 2,205 characters, of which 1,536 characters are constant, 191 are variable and parsimony uninformative, and 478 are parsi- mony informative. Maximum Parsimony analysis yielded one equally parsimo- nious tree (TL = 2,599, Cl = 0.4055, HI = 0.5945, RI = 0.5984 and RC = 0.2427). The best model for the ITS+nLSU dataset, estimated and applied in the Bayes- ian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard deviation of split frequencies = 0.006800 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg. ESS) = 294. The Phanerochaete aligned dataset comprised 107 specimens representing 59 species. Four Markov chains were run for two runs from random starting trees, each for 8.5 million generations for the ITS+nLSU (Fig. 2) dataset, with trees and parameters sampled every 1,000 generations. The dataset had an aligned length of 2,333 characters, of which 1,578 characters are constant, 255 are variable, parsimony uninformative, and 500 are informative. Maximum Parsimony analy- sis yielded one equally parsimonious tree (TL = 2,872, Cl = 0.3729, HI = 0.6271, MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 271 Ying Xu et al.: Fungal deversity RI = 0.5891 and RC = 0.2197). The best model for the ITS dataset, estimated and applied in the Bayesian analysis, was GTR+I+G. Both Bayesian analysis and ML analysis resulted in a similar topology to MP analysis with an average standard de- viation of split frequencies = 0.012119 (BI), and the effective sample size (ESS) for Bayesian analysis across the two runs is double the average ESS (avg. ESS) = 256. The phylogram, based on the combined ITS+nLSU sequences (Fig. 1) analysis, showed that two new genera, Paradonkia and Neodonkiella were assigned to the family Phanerochaetaceae. The phylogenetic tree, based on ITS+nLSU sequences (Fig. 2), revealed that Phanerochaete albocremea formed a monophyletic lineage and was closely related to Phanerochaete porostereoides S.L. Liu&S.H. He and Pha- nerochaete fusca Sheng H. Wu et al. The new species Phanerochaete fissurata was retrieved as a sister to Phanerochaete cinerea Y.L. Xu &S.H. He. The new taxon Pha- nerochaete punctata was sister to Phanerochaete hainanensis S.H. He & Y.C. Dai. Taxonomy Phanerochaetaceae Julich Type genus. Phanerochaete P. Karst. Description. Mostly corticioid species, along with a few resupinate or pileate polypores (Wu et al. 2022a; Zhao et al. 2024), and hydnaceous species; hyphal system usually monomitic, rarely dimitic; hyphae usually simple septate, rare- ly nodose septate; basidiospores thin-walled, smooth, colorless; cystidia often present. Producing a white rot (Chen et al. 2021). Accepted genera. A/boefibula, Bijerkandera, Callosus, Cremeoderma, Crepatu- ra, Donkia, Donkiella, Efibulella, Gelatinofungus, Geliporus, Hapalopilus, Hypho- dermella, Odontoefibula, Oxychaete, Paradonkia, Neodonkiella, Phanerina, Pha- nerochaete, Phaeophlebiopsis, Phlebiopsis, Pirex, Porostereum, Quasiphlebia, Rhizochaete, Riopa, Roseograndinia, and Terana. Notes. The family Phanerochaetaceae was established by Julich with the genus Phanerochaete as the type genus. This family belongs to the phlebioid clade within the order Polyporales and causes white rot (Larsson 2007; Binder et al. 2013; Miettinen et al. 2016; Justo et al. 2017). In the current study, twen- ty-seven genera are accepted in Phanerochaetaceae, including two new genera of the present study of Paradonkia and Neodonkiella. Paradonkia Y. Xu & C.L. Zhao, gen. nov. MycoBank No: 856347 Type species. Paradonkia farinacea Y. Xu & C.L. Zhao. Etymology. paradonkia (Lat.): “para” and “donkia” refer to a close phylogenet- ic relationship with the genus Donkia. Description. Basidiomata annual, resupinate, adnate. Hymenial surface farina- ceous, pale cream to gray cream. Hyphal system monomitic; generative hyphae with both simple septa (more frequent) and clamp connections, colorless. Subic- ular hyphae colorless, thick-walled. Crystals abundant, crowded at hymenial lay- er and subiculum. Cystidia and cystidioles absent. Basidia clavate, thin-walled, 4-sterigmate. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI-, CB-. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 272 Ying Xu et al.: Fungal deversity Notes. In our phylogenetic analysis (Fig. 1), Paradonkia is identified as a monophyletic group typified by P. farinacea. The new genus Paradonkia falls within the family Phanerochaetaceae (Polyporales) and is closely related to Donkia. The genus Donkia is distinguished from Paradonkia by its pileate basid- iomata with a white to cream context, and cinnamon to orange-brown, odontoid to hydnoid hymenophore (Nakasone 1990; Chen et al. 2021). Paradonkia farinacea Y. Xu & C.L. Zhao, sp. nov. MycoBank No: 856348 Figs 3,4 Diagnosis. Differs from other species by the farinaceous basidiomata with the pale cream to gray cream hymenial surface, a monomitic hyphal system, cys- tidia and cystidioles absent, narrowly clavate basidia, ellipsoid basidiospores. Holotype. CHINA * Yunnan Province, Qujing, Zhanyi District, Lingjiao Town, Xiajia Village, 25°58'N, 103°47'E, altitude 2000 m, on the fallen angiosperm branch, leg. C.L. Zhao, 6 March 2023, CLZhao 27184 (SWFC). Etymology. farinacea (Lat.): refers to the holotype having a farinaceous hy- menial surface. Fruiting body. Basidiomata annual, resupinate, adnate, without odor or taste when fresh, farinaceous, upon drying, up to 6.5 cm long, 1.3 cm wide, 110-180 um thick. Hymenial surface smooth, white to cream when fresh, pale cream to gray cream when dry, unchanged in KOH. Sterile margin narrow, gray cream, 1 mm wide. Hyphal system. Monomitic, generative hyphae with simple septa and clamp connections, IKI-, CB-; tissues unchanged in KOH. Subicular hyphae mainly horizontal, colorless, thick-walled, slightly flexuous, rarely branched, interwo- ven, 6.0-7.5 um in diameter. Crystals abundant, crowded. Subhymenium indis- tinct, hyphae in this layer similar to subicular hyphae. Hymenial layer. Generative hyphae short-celled, colorless, 3-4 um in diam- eter, thin- to slightly thick-walled. Crystals abundant, crowded. Cystidia and cystidioles absent. Basidia narrowly clavate, slightly flexuous, thin-walled, with four sterigmata and a simple septum, 25-29 x 4.5-6.5 um. Basidioles similar to basidia in shape, but slightly smaller. Basidiospores. Ellipsoid, colorless, thin-walled, smooth, occasionally with oil drops, IKI-, CB-, 4-6(—6.5) x (2.5-)3-4(—4.5) um, L = 4.87 um, W = 3.37 um, Q = 1.45 (n = 30/1). Additional specimen examined (paratype). * Yunnan Province, Qujing, Zhanyi District, Lingjiao Town, Xiajia Village, 25°58'N, 103°47'E, altitude 2000 m, on the fallen angiosperm branch, leg. C.L. Zhao, 6 March 2023, CLZhao 27221 (SWFC). Neodonkiella Y. Xu & C.L. Zhao, gen. nov. MycoBank No: 856349 Type species. Neodonkiella yinjiangensis Y. Xu & C.L. Zhao. Etymology. Neodonkiella (Lat.): “Neo” and “donkiella” refer to the new ge- nus’s molecular systematic similarity to the genus Donkiella. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 273 Ying Xu et al.: Fungal deversity et aks” Mil ant ee a er” a Figure 3. Basidiomata of Paradonkia farinacea in general and detailed views (CLZhao 27184, holotype). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 574 Ying Xu et al.: Fungal deversity ae. > Eps (Gps te > GC Se ewe io Se =—— 2 Fi a pu mM A ee Figure 4. Microscopic of Paradonkia farinacea (holotype, aa 27184) A basidiospores B basidia C basidi- oles D asec Ne Aes teas ale bar SEAN TOMA A D); 10 x 100 Oil. Ying Xu et al.: Fungal deversity Description. Basidiomata annual, resupinate, adnate, soft coriaceous. Hy- menial surface smooth, white to pale cream. Hyphal system monomitic; gen- erative hyphae with both simple septa and clamp connections, colorless. Subicular hyphae colorless, thick-walled. Crystals abundant, crowded at hyme- nial layer and subiculum. Leptocystidia numerous in the hymenium. Cystidioles absent. Basidia clavate, thin-walled, 4-sterigmate. Basidiospores ellipsoid, col- orless, thin-walled, smooth, IKI-, CB-. Notes. In our phylogenetic analysis (Fig. 1), the new genus Neodonkiella was identified as a monophyletic group typified by P yinjiangensis. The new tax- on Neodonkiella falls within the family Phanerochaetaceae (Polyporales) and is closely related to the genus Donkiella. Donkiella is distinguished from Ne- odonkiella by its generative hyphae with simple septa only (Dong et al. 2024). Neodonkiella yinjiangensis Y. Xu & C.L. Zhao, sp. nov. MycoBank No: 856350 Figs 5, 6 Diagnosis. Differs from other species by pale white to pale cream hymenial surface, a monomitic hyphal system, slightly flexuous leptocystidia, narrowly clavate basidia, and ellipsoid basidiospores. Holotype. CHINA * Yunnan Province, Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, 23°48'N, 97°38'E, altitude 1500 m, on the fallen an- giosperm branch, leg. C.L. Zhao, 19 July 2023, CLZhao 30585 (SWFC). Etymology. yingjiangensis (Lat.): refers to the locality (Yingjiang County) of the type specimen. Fruiting body. Basidiomata annual, resupinate, slightly adnate, without odor or taste when fresh, soft coriaceous upon drying, up to 3.5 cm long, 0.7 cm wide, 50- 100 um thick. Hymenial surface smooth, white when fresh, white to pale cream when dry, unchanged in KOH. Sterile margin narrow, white, up to 0.5 mm wide. Hyphal system. Monomitic; generative hyphae with simple septa and clamp connections, IKI-, CB-; tissues unchanged in KOH. Subicular hyphae colorless, thick-walled, straight, slightly branched, interwoven, 3-4 um in diameter. Crys- tals abundant, crowded. Subhymenium indistinct, hyphae in this layer similar to subicular hyphae. Hymenial layer. Generative hyphae vertical, short-celled, colorless, thin- walled, 2-3 um in diameter. Crystal abundant, crowded. Leptocystidia color- less, thin-walled, slightly flexuous, smooth, sometimes with small oil drops, numerous in the hymenium, 25-32 x 2.5-4 um. Basidia narrowly clavate, slightly flexuous, thin-walled, with four sterigmata and a simple septum, 18-23 x 4—5 um. Basidioles similar to basidia in shape, but slightly smaller. Basidiospores. Ellipsoid, colorless, thin-walled, smooth, occasionally with small oil drops, IKI-, CB-, (3—)3.5-5 x (1.5-)2-2.5 um, L = 4.1 um, W = 2.2 um, Q = 1.89 (n = 30/1). Phanerochaete P. Karst. Type species. Phanerochaete alnea (Fr.) P. Karst. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 276 Ying Xu et al.: Fungal deversity DP? 24 —.* Figure 5. Basidiomata of Neodonkiella yinjiangensis in general and detailed views (CLZhao 30585, holotype). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 977 Ying Xu et al.: Fungal deversity 0 dg J Poh a | NS oat \ Ny UR Hae ccd D Figure 6. Microscopic structures of Neodonkiella yinjiangensis (holotype, CLZhao 30585) A basidiospores B basidia & basidioles C leptocystidia D a section of the fruit body. Scale bars: 5 um (A); 10 um (B-D); 10 x 100 Oil. Notes. In our phylogenetic analysis (Fig. 2), Phanerochaete was recovered as a monophyletic with strong support of 59 species, including the three new species (Phanerochaete albocremea, P. fissurata, and P. punctata) presented here. The basidiomata of Phanerochaete s.s. are typically membranaceous, in which the hymenophore is usually smooth, but tuberculate, grandinioid, odonti- oid to hydnoid or even poroid hymenophore occur in some species. Microscopi- cally, Phanerochaete is characterized by having mostly a monomitic hyphal sys- tem with ordinarily simple septa hyphae and clavate basidia. Cystidia present in many species, which may be naked or encrusted, and often with thin walls. The colorless subiculum is present in most species, but a brownish subiculum also occurs (Chen et al. 2021; Deng et al. 2024). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 078 Ying Xu et al.: Fungal deversity Phanerochaete albocremea Y. Xu & C.L. Zhao, sp. nov. MycoBank No: 856147 Figs 7,8 Diagnosis. Differs from other species in the soft coriaceous basidiomata and white to pale cream hymenial surface, a monomitic hyphal system, clavate ba- sidia, and narrowly ellipsoid basidiospores. Holotype. CHINA * Yunnan Province, Zhaotong, Wumengshan National Na- ture Reserve, 28°03'N, 104°20'E, altitude 1500 m, on the fallen angiosperm branch, leg. C.L. Zhao, 28 August 2023, CLZhao 32235 (SWFC). Etymology. a/bocremea (Lat.): refers to the holotype having a white to pale cream hymenial surface. Fruiting body. Basidiomata annual, resupinate, adnate, without odor or taste when fresh, soft coriaceous upon drying, up to 5.2 cm long, 1.1 cm wide, 100- 150 um thick. Hymenial surface smooth, white when fresh, white to pale cream when dry, unchanged in KOH. Sterile margin white, fibrous, up to 2 mm wide. Hyphal system. Monomitic; generative hyphae simple septa, IKI-, CB-; tissues unchanged in KOH. Subicular hyphae colorless, thin- to thick-walled, straight, interwoven, usually encrusted with crystals, 6.5-9.5 um in diameter. Crystals abundant, crowded. Subhymenium indistinct, hyphae in this layer sim- ilar to subicular hyphae. Hymenial layer. Generative hyphae vertical, short-celled, colorless, 3-5 um in diameter, thin- to slightly thick-walled. Crystals abundant, crowded. Cystidia and cystidioles absent. Basidia clavate, slightly flexuous, thin-walled, with four sterigmata and a simple septum, 16-21 x 4—5.5 um. Basidioles similar to ba- sidia in shape, but slightly smaller. Basidiospores. Narrowly ellipsoid, colorless, thin-walled, smooth, occa- sionally with small oil drops, IKI-, CB-, 3.5-5 x 2-3(-3.5) um, L = 4.30 um, W = 2.69 um, Q = 1.59 (n = 120/4). Additional specimens examined (paratypes). * Yunnan Province, Zhaotong, Wumengshan National Nature Reserve, 28°03'N, 104°20'E, altitude 1500 m, on the dead bamboo, leg. C.L. Zhao, 27 August 2023, CLZhao 31998; on the angiosperm stump, leg. C.L. Zhao, 27 August 2023, CLZhao 32032, CLZhao 32035 (SWFC). Phanerochaete fissurata Y. Xu & C.L. Zhao, sp. nov. MycoBank No: 856149 Figs 9, 10 Diagnosis. Differs from other species by the gray-brown and cracked hymenial surface, a monomitic hyphal system with brownish subicular hyphae, narrowly clavate basidia, and ellipsoid basidiospores. Holotype. CHINA * Yunnan Province, Zhaotong, Daguan County, Wumeng- shan National Nature Reserve, 28°08'N, 103°58'E, altitude 1800 m, on the fallen angiosperm branch, leg. C.L. Zhao, 17 October 2023, CLZhao 35311 (SWFC). Etymology. fissurata (Lat.) refers to the holotype having a cracked hymenial surface. Fruiting body. Basidiomata annual, resupinate, slightly adnate, without odor or taste when fresh, soft coriaceous when fresh, hard coriaceous upon drying, MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 279 Ying Xu et al.: Fungal deversity Figure 7. Basidiomata of Phanerochaete albocremea in general and detailed views (CLZhao 32235, holotype). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 280 Ying Xu et al.: Fungal deversity Tinean Hi} o Hh Figure 8. Microscopic structures of Phanerochaete albocremea (holotype, CLZhao 32235) A basidiospores B basidia & basidioles C a section of the fruit body. Scale bars: 5 ym (A); 10 um (B-C); 10 x 100 Oil. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 081 Ying Xu et al.: Fungal deversity & “ +4 - s 7 2 > ; y! em fe , 7 5 ; ~. = Ay Ia a Eee I 5 ee ae z * Figure 9. Basidiomata of Phanerochaete fissurata in general and detailed views (CLZhao 35311, holotype). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 982 Ying Xu et al.: Fungal deversity a fy ong IT Hi LAT OUIAC ne ae iit Ying Xu et al.: Fungal deversity up to 7.7 cm long, 1.8 cm wide, 50-120 um thick. Hymenial surface smooth, pale cream when fresh, gray-brown when dry, unchanged in KOH, cracked. Ster- ile margin narrow, gray brown, up to 1.5 mm wide. Hyphal system. Monomitic; generative hyphae with simple septa, IKI-, CB-; tissues unchanged in KOH. Subicular hyphae brownish, thick-walled, slightly branched, interwoven, slightly flexuous, 3.5—5.5 um in diameter. Subhymenium indistinct, hyphae in this layer similar to subicular hyphae. Hymenial layer. Generative hyphae vertical, short-celled, colorless, 3-4.5 um in diameter, thin- to slightly thick-walled. Cystidia and cystidioles absent. Basidia narrowly clavate, thin-walled, with four sterigmata and a simple septum, 17.5- 21.5 x 3.5-5.5 um. Basidioles in shape are similar to basidia, but slightly smaller. Basidiospores. Ellipsoid, colorless, thin-walled, smooth, occasionally with small oil drops, IKI-, CB-, 4-5.5(—6) x 2—3(-3.5) um, L = 4.70 um, W = 2.43 um, Q = 1.85-2.02 (n = 60/2). Additional specimen examined (paratype). * Yunnan Province, Zhaotong, Daguan County, Wumengshan National Nature Reserve, 28°08'N, 103°58'E, alti- tude 1800 m, on the fallen angiosperm branch, leg. C.L. Zhao, 17 October 2023, CLZhao 35321 (SWFC). Phanerochaete punctata Y. Xu & C.L. Zhao, sp. nov. MycoBank No: 856148 Figs 11,12 Diagnosis. Differs from other species in thin basidiomata and white to pale buff hymenial surface, a monomitic hyphal system, cylindrical to subfusiform leptocystidia, clavate basidia, and ellipsoid basidiospores. Holotype. CHINA * Yunnan Province, Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, 23°48'N, 97°38'E, altitude 1500 m, on the fallen an- giosperm branch, leg. C.L. Zhao, 19 July 2023, CLZhao 30512 (SWFC). Etymology. punctata (Lat.) refers to the holotype having punctate basidi- omata. Fruiting body. Basidiomata annual, resupinate, adnate, without odor or taste when fresh, membranaceous upon drying, up to 6.3 cm long, 1.7 cm wide, 40- 100 um thick. Hymenial surface thin, white when fresh, white to pale buff when dry, unchanged in KOH. Sterile margin narrow, fibrous, white, up to 0.5 mm wide. Hyphal system. Monomitic; generative hyphae mostly simple septate, rarely with single or double clamp connections, IKI-, CB-; tissues unchanged in KOH. Subicular hyphae colorless, thick-walled, straight, interwoven, 5.5-8.5 um in diameter, presence of double clamp connections. Crystals abundant, crowded. Subhymenium indistinct, hyphae in this layer similar to subicular hyphae. Hymenial layer. Generative hyphae vertical, short-celled, colorless, 3-4.5 um in diameter, thin- to slightly thick-walled. Crystals abundant, crowded. Lepto- cystidia cylindrical to subfusiform, colorless, thin-walled, smooth, sometimes slightly flexuous, numerous, 30-37.5 x 4.5-7 um. Basidia clavate, slightly flex- uous, thin-walled, with four sterigmata and a simple septum, 18-22 x 5-7 um. Basidioles similar to basidia in shape, but slightly smaller. Basidiospores. Ellipsoid, colorless, thin-walled, smooth; IKI-, CB-; 3.5-5(- 5.5) x 2-3.5 um, L = 4.29 um, W = 2.79 um, Q = 1.53 (n = 30/1). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 284 Ying Xu et al.: Fungal deversity 1 cm (A); 1 mm (B). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 985 Ying Xu et al.: Fungal deversity Ss i Ie Poy. “G:. 26 ES C D Figure 12. Microscopic structures of Phanerochaete punctata (holotype, CLZhao 30512) A basidiospores B basidia & basidioles C leptocystidia D a section of the fruit body. Scale bars: 5 um (A); 10 um (B-D); 10 x 100 Oil. Additional specimen examined (paratype). CHINA * Yunnan Province, De- hong, Yingjiang County, Tongbiguan Provincial Nature Reserve, 23°48'N, 97°38 E, altitude 1500 m, on the fallen angiosperm branch, leg. C.L. Zhao, 19 July 2023, CLZhao 30365 (SWFC). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 286 Ying Xu et al.: Fungal deversity Discussion In the present study, two new genera, Paradonkia and Neodonkiella, and five new species, Paradonkia farinacea, Neodonkiella yinjiangensis, Phanerochaete albocremea, Phanerochaete fissurata and Phanerochaete punctata are de- scribed based on phylogenetic analyses and morphological characteristics. Phanerochaete is widely distributed in the world and has extremely import- ant research value. It was the 13" most-cited fungus in 2011-2021, and it is the highest-cited fungus in basidiomycetes (Bhunjun et al. 2024). Phylogenetically, based on the combined ITS+nLSU sequence data (Figs 1, 2), it demonstrated that two new genera and the five new species were all nested in the family Phanerochaetaceae, in which P albocremea, P fissurata and P. punctata were nested in the genera Phanerochaete within the family Phanerochaetaceae of the order Polyporales (Basidiomycota). Based on ITS+nLSU topology tree (Fig. 1), Paradonkia farinacea was retrieved as a sister to Donkia pulcherrima (Berk. & M.A. Curtis) Pilat, and the species Ne- odonkiella yinjiangensis was sister to Donkiella yunnanensis. However, Donkia pulcherrima differs from Paradonkia farinacea by its pileate basidiomata with white to cream context, cream to white with orange tones hymenial surface, and the presence of the multiple clamp connections on the context hyphae (Chen et al. 2021). Donkiella yunnanensis J.H. Dong & C.L. Zhao is distinguished from Neodonkiella yinjiangensis by its membranous basidiomata, generative hyphae with simple septa, and wider basidiospores (4.2-6 x 2.5-3.2 um vs. 3.5-5 x 2-2.5 um; Dong et al. 2024). Based on ITS+nLSU topology tree (Fig. 2), Phanerochaete albocremea formed a monophyletic lineage and was closely related to P porostereoides and P. fus- ca. P fissurata was retrieved as a sister to P cinerea, and P. punctata was sister to P hainanensis. However, P. porostereoides differs from P albocremea by its brown to dark brown hymenial surface, brown subicular hyphae, and longer ba- sidia (23-35 x 4—5.3 um vs. 16-21 x 4—5.5 um; Liu and He 2016). Phaneroch- aete fusca differs from P albocremea by its dark brown hymenial surface, brown subicular hyphae, longer basidia (22-50 x 5-6 um vs. 16-21 x 4—5.5 um) and bigger basidiospores (5.7—7.3 x 3-3.5 um vs. 3.5-5 x 2-3 um; Wu et al. 2018). Phanerochaete cinerea differs from P fissurata by its gray to grayish brown hyme- nial surface and with many small patches (Xu et al. 2020). Phanerochaete hainan- ensis is distinguished from P. punctata by its orange hymenophore, all generative hyphae without clamp connections, longer subulate to subcylindrical cystidia (35-70 x 3-7 um vs. 30-37.5 x 4.5-7 um; Boonmee et al. 2021). Morphologically, Phanerochaete albocremea resembles P. rhizomorpha by having a cream hymenial surface. However, P. rhizomorpha differs from P. albo- cremea by its membranous basidiomata, and longer basidia (25-28 x 4-5 um vs. 16-21 x 4-5.5 um; Chen et al. 2021). Phanerochaete fissurata is similar to P. thailandica by having brown subicular hyphae, but the latter having both big- ger basidia (25-38 x 5-7 um vs. 17.5-21.5 x 3.5-5.5 um) and basidiospores (7-8 x 4-4.5 um vs. 4-5.5 x 2-3 um; Sadlikova and Kout 2017). Phanerochaete punctata resembles P. sinensis by having clavate basidia. However, P. sinensis is distinguished from P. punctata by its white to orange hymenophore and lon- ger leptocystidia (35-50 x 4-6 um vs. 30-37.5 x 4.5-7 um; Xu et al. 2020). MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 287 Ying Xu et al.: Fungal deversity Corticioid fungi are a large group of wood-inhabiting fungi with simpler basid- iomata and fewer distinguishing morphological features when compared with polypores and mushrooms, but its species and phylogenetic diversity are even higher than polypores but less intensively studied (Larsson et al. 2004; Binder et al. 2005; Bernicchia and Gorjon 2010; Dai 2011; Sun et al. 2020). A large amount of corticioid taxa have not been discovered and descSunribed worldwide, espe- cially in the subtropical and tropical areas (Yang et al. 2023; Zhou et al. 2024). As shown in this study and earlier ones (Volobuev et al. 2015; Chen et al. 2018; Ordynets et al. 2018; Wu et al. 2022b; Wang et al. 2023), DNA sequence data are very useful in exploring cryptic taxa and diversity of corticioid fungi. Thus, in order to understand the diversity, phylogeny, and evolution of fungi, future taxo- nomic and phylogenetic work should focus more on the corticioid group by using both molecular and morphological characters (Xu et al. 2020). Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding The research was supported by the National Natural Science Foundation of China (Proj- ect Nos. 32170004, U2102220), the Yunnan Province College Students Innovation and Entrepreneurship Training Program (Project Nos. S202410677019, S202410677097), High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Re- search Project of Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology (TMKF2023A03). Author contributions Conceptualization, C.Z.; methodology, C.Z. and Y.X.; software, C.Z., X.Y. and Y.X.; valida- tion, C.Z.; formal analysis, C.Z., Y.X. and Y.Y.; investigation, D.C., C.Z., K.S., S.Z., W.Z., Y.X., and Y.Y.; resources, D.C., C.Z., K.S., and W.Z.; writing—original draft preparation, C.Z. and Y.X.; writing—review and editing, C.Z., Y.X. and Y.Y.; visualization, C.Z. and Y.X.; supervi- sion, C.Z.; project administration, C.Z.; funding acquisition, C.Z. All authors have read and agreed to the published version of the manuscript. Author ORCIDs Ying Xu © https://orcid.org/0009-0004-1599-0630 Yang Yang ® https://orcid.org/0000-0001-8054-948X Xin Yang © https://orcid.org/0009-0009-7755-0581 Daxiang Chen © https://orcid.org/0009-0001-2309-1991 Wen Zheng ® https://orcid.org/0009-0005-9996-4284 Kaize Shen © https://orcid.org/0000-0002-0441-4257 Sicheng Zhang ® https://orcid.org/0009-0003-6287-9823 Data availability All of the data that support the findings of this study are available in the main text. MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 098 Ying Xu et al.: Fungal deversity References Bernicchia A, Gorjon SP (2010) Fungi Europaei 12: Corticiaceae s.|. Edizioni Candusso, Alassio, 1-1008. Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC,Fran- cisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Btaszkowski J, Braun U, Souza FA, Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mon- gkolsamrit S, Rober V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilanski P Bradley CA, Bubner B, Burgess TI, Buyck B, CadeZ N, Cai L, Calaca FUS, Campbell LU, Chaverri P Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custodio FA, Dai YC, Damm U, Santiago ALCMA, Angeli- ni RMDM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturri- eta-Gonzalez |, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikum- bura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Ro- drigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P Shivas RG, Silar P Souza-Motta CM, Silva-Filho AGS, Spies CFu, Stchigel AM, Sterffinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024) What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. https://doi.org/10.3114/sim.2024.108.01 Binder M, Hibbet DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenet- ic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). Systematics and Biodiversity 3: 113-157. https://doi. org/10.1017/S1477200005001623 Binder M, Justo A, Riley R, Salamov A, Lopez-Giraldez F, Sjdkvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson KH, Townsend J, Grigoriev IV, Hibbett DS (2013) Phylo- genetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350-1373. https://doi.org/10.3852/1 3-003 Boonmee S, Dhanushka NW, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Walter R, Marco L, Sanjay KS, Shiwali R, Paras NS, Deepak KM, Ajay C L, Deepika C, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martin MP, Margarita D, Telleria MT, Izabela LK, Andrzej MJ, Kare L, Pereira D, Phillips Alan JL, Suwannarach N, Kumla J, Khuna S, Lumyong §S, Potter Tarynn, Shivas RG, Sparks AH, Vaghef N, Ab- del-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar Nikh- il, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent |, Bona L, Merényi Z, Boros L, Zoltan B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Porde A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gaforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchi- MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 289 Ying Xu et al.: Fungal deversity kumbura SSN, Phukhamsakda C, Mapook A, Hyde KD (2021) Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fun- gal taxa. Fungal Diversity 111: 1-335. https://doi.org/10.1007/s13225-021-00489-3 Chen CC, Chen CY, Wu SH (2021) Species diversity, taxonomy and multi-gene phyloge- ny of phlebioid clade (Phanerochaetaceae, Irpicaceae, Meruliaceae) of Polyporales. Fungal Diversity 111: 337-442. https://doi.org/10.1007/s13225-021-00490-w Chen CC, Wu SH, Chen CY (2018) Hydnophanerochaete and Odontoefibula, two new gen- era of phanerochaetoid fungi (Polyporales, Basidiomycota) from East Asia. Mycok- eys 39: 75-96. https://doi.org/10.3897/MycoKeys.39.28010 Chen R, He X, Zhao CL (2022) Callosus wenshanensis gen. & sp. nov. from China. Myco- taxon 137: 435-448. https://doi.org/10.5248/137.435 Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxon- omy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137-392. https://doi.org/10.1007/s13225-01 9-00427-4 Dai YC (2011) A revised checklist of corticioid and hydnoid fungi in China for 2010. My- coscience 52: 69-79. https://doi.org/10.1007/s10267-01 0-0068-1 Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, SI J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40: 770-805. https://doi.org/10.13346/j.mycosystema.210036 Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109 Deng Y, Li J, Zhao C, Zhao J (2024) Four new fungal species in forest ecological sys- tem from southwestern China. Journal of Fungi 10: 194. https://doi.org/10.3390/ jof10030194 Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Muhammad A, Zhao CL (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. My- cosphere 15(1): 1110-1293. https://doi.org/10.5943/mycosphere/15/1/10 Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using boot strap. Evolution 39(4): 783-791. https:// doi.org/10.2307/2408678 Floudas D, Hibbett DS (2015) Revisiting the taxonomy of Phanerochaete (Polyporale Ba- sidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biology 119: 679-719. https://doi.org/10.101 6/j.funbio.2015.04.003 Ghobad-Nejhad M, Liu, SL, Langer E, Dai YC (2015) Molecular and morphological evidence reveal a new non-cystidiate species belonging to the core Phanerochaete (Polypora- les). Mycological Progress 14(9): 68. https://doi.org/10.1007/s11557-015-1072-9 He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Schoutteten N, Denchev CM, Kemler M, Gorjon SP, Begerow D, Valenzuela R, Davoodian N, Niskanen T, Vizzini A, Redhead SA, Ramirez-Cruz V, Papp V, Dudka VA, Dutta AK, Garcia-Sandoval R, Liu XZ, Kijpornyong- pan T, Savchenko A, Tedersoo L, Theelen B, Trierveiler-Pereira L, Wu F, Zamora JC, Zeng XY, Zhou LW, Liu SL, Ghobad-Nejhad M, Giachini AJ, Li GJ, Kakishima M, Olariaga |, Haelewaters D, Sulistyo B, Sugiyama J, Svantesson S, Yurkov A, Alvarado P Antonin V, da Silva AF, Druzhinina I, Gibertoni TB, Guzman-Davalos L, Justo A, Karunarathna SC, Galappaththi MCA, Toome-Heller M, Hosoya T, Liimatainen K, Marquez R, Mesic¢ A, Moncalvo JM, Nagy LG, Varga T, Orihara T, Raymundo T, Salcedo |, Silva-Filho AGS, Tkalcec Z, Wartchow F, Zhao CL, Bau T, Cabarroi-Hernandez M, Cortés-Pérez A, De- cock C, De Lange R, Weiss M, Menolli Jr. N, Nilsson RH, Fan YG, Verbeken A, Gafforov Y, Meiras-Ottoni A, Mendes-Alvarenga RL, Zeng NK, Wu Q, Hyde KD, Kirk PM, Zhao RL MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 290 Ying Xu et al.: Fungal deversity (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fun- gal Diversity 126: 127-406. https://doi.org/10.1007/s13225-024-00535-w Hu YW, Karunarathna SC, Li H, Galappaththi MC, Zhao CL, Kakumyan P Mortimer PE (2022) The impact of drying temperature on basidiospore size. Diversity 14(4): 239. https://doi.org/10.3390/d14040239 James TY, Stajich JE, Hittinger, CT, Rokas A (2020) Toward a fully resolved fungal tree of life. Annual Review of Microbiology 74: 291-313. https://doi.org/10.1146/an- nurev-micro-022020-051835 Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjokvist E, Lindner D, Nakasone KK, Niemela T, Larsson KH, Ryvarden L, David S Hibbett (2017) A revised family-level clas- sifcation of the Polyporales (Basidiomycota). Fungal Biology 121: 798-824. https:// doi.org/10.1016/j.funbio.201 7.05.010 Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. https://doi.org/10.1093/bib/bbx108 Larsson KH (2007) Re-thinking the classifcation of corticioid fungi. Mycological Re- search 111: 1040-1063. https://doi.org/10.1016/j.mycres.2007.08.001 Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276-3278. https://doi.org/10.1093/bioinformatics/btu531 Larsson KH, Larsson E, Koljalg U (2004) High phylogenetic diversity among corticioid ho- mobasidiomycetes. Mycological Research 108: 983-1002. https://doi.org/10.1017/ $0953756204000851 Liu SL, He SH (2016) Phanerochaete porostereoides, a new species in the core clade with brown generative hyphae from China. Mycosphere 7(5): 648-655. https://doi. org/10.5943/mycosphere/7/5/10 Liu S, Shen LL, Xu TM, Song CG, Gao N, Wu DM, Sun YF, Cui BK (2023) Global diversity, molecular phylogeny and divergence times of the brown-rot fungi within the Poly- porales. Mycosphere 14: 1564-1664. https://doi.org/10.5943/mycosphere/14/1/18 Luo KY, Zhang X, Dai YC, Yuan Y (2024) Four new species of Phanerochaete (Polypo- rales, Basidiomycota) from China. MycoKeys 111: 41-64. https://doi.org/10.3897/ mycokeys.111.133093 Ma X, Zhao CL (2019) Crepatura ellipsospora gen. et sp. nov. in Phanerochaetaceae (Polyporales, Basidiomycota) bearing a tuberculate hymenial surface. Mycological Progress 18: 785-793. https://doi.org/10.1007/s11557-019-01 488-0 Miettinen O, Spirin V, Viasak J, Rivoire B, Stenroos S, Hibbett D (2016) Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17: 1-46. https://doi.org/10.3897/MycoKeys.17.10153 Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond, Chicago, IL, 39 pp. https://doi. org/10.1145/2335755.2335836 Moreno G, Blanco MN, Platas G, Checa J, Olariaga | (2017) Reappraisal of Climacodon (Ba- sidiomycota, Meruliaceae) and reinstatement of Donkia (Phanerochaetaceae) using mul- tigene data. Phytotaxa 291(3): 171-182. https://doi.org/10.11646/phytotaxa.291.3.1 Nakasone KK (1990) Cultural studies and identification of wood-inhabiting Corticiaceae and selected Hymenomycetes from North America. Mycologia Memoirs 15: 1-412. Ordynets A, Scherf D, Pansegrau F, Denecke J, Denecke J, Lysenko L, Larsson KK, Langer E (2018) Short-spored Subulicystidium (Trechisporales, Basidiomycota): high mor- MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 291 Ying Xu et al.: Fungal deversity phological diversity and only partly clear species boundaries. MycoKeys 27(35): 41- 99. https://doi.org/10.3897/MycoKeys.35.25678 Parmasto E, Hallenberg N (2000) A taxonomic study of phlebioid fungi (Basidiomycota). Nordic Journal of Botany 20: 105-118. https://doi.org/10.1111/j.1756-1051.2000. tb00740.x Petersen JH (1996) Farvekort. In: Petersen JH (Ed.) The Danish Mycological Society’s Colour-Chart, Foreningen til Svampekundskabens Fremme. Greve, Germany, 6 pp. Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspe O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR,Firmino AL, Ghosh A, Karunarathna A, Mesi¢ A, Dutta AK, Thong- bai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kusan I, Cano J, Gené J, Lil JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Duenas M, Jadan Margita, Martin MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matocec N, Silva NI, Pereira OL, Singh PN, Man- imohan P, Uniyal P Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkaléec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P Zhao RL, Lumyong, S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929-1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95: 1-273. https://doi.org/10.1007/s13225- 019-00421-w Rathnayaka AR, Tennakoon DS, Jones GEB, Wanasinghe DN, Bhat DJ, Priyashantha AKH, Stephenson SL, Tibpromma S, Karunarathna SC (2024) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. New Zealand Journal of Botany 62: 1-28. https://doi.org/ 10.1080/0028825X.2024.2381734 Ronquist F, Teslenko M, van der Mark P Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Molecular Systems Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029 Sadlikova M, Kout J (2017) A new Phanerochaete (Polyporales, Basidiomycota) with brown subicular hyphae from Thailand. Mycosphere 8(6): 1124-1030. https://doi. org/10.5943/mycosphere/8/6/4 Spirin V, Volobuev S, Okun M, Miettinen O, Larsson KH (2017) What is the type species of Phanerochaete (Polyporales, Basidiomycota). Mycological Progress 16: 171-183. https://doi.org/10.1007/s11557-016-1267-8 Sun YF, Costa-Rezende DH, Xing JH, Zhou JL, Zhang B, Gibertoni TB, Gates G, Glen M, Dai YC, Cui BK (2020) Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44: 206-239. https://doi.org/10.3767/per- soonia.2020.44.08 Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Meth- ods), Version 4.0b10, Sinauer Associates: Sunderland, MA, USA. Telleria MT, Duefias M, Melo |, Martin MP (2010) Morphological and molecular stud- ies of Hyphodermella in the Western Mediterranean area. Mycological Progress 9: 585-596. https://doi.org/10.1007/s11557-010-0666-5 MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 992 Ying Xu et al.: Fungal deversity Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 Volobuev S, Okun M, Ordynets A, Spirin V (2015) The Phanerochaete sordida group (Poly- porales, Basidiomycota) in temperate Eurasia, with a note on Phanerochaete pallida. Mycological Progress 14: 80. https://doi.org/10.1007/s11557-015-1097-0 Wang DQ, Zhao CL (2021) Morphological and phylogenetic evidence for recognition of two new species of Phanerochaete from East Asia. Journal of Fungi 7: 1063. https:// doi.org/10.3390/jof7121063 Wang CG, Zhao H, Liu HG, Zeng GY, Yuan Y, Dai YC (2023) A multi-gene phylogeny clari- fies species diversity, taxonomy, and divergence times of Ceriporia and other related genera in Irpicaceae (Polyporales, Basidiomycota). Mycosphere 14(1): 1665-1729. https://doi.org/10.5943/mycosphere/17/1/9 Wang CG, Dai YC, Kout J, Gates GM, Liu HG, Yuan Y, Vlasak J (2024) Multi-gene phyloge- ny and taxonomy of Physisporinus (Polyporales, Basidiomycota). Mycosphere 15(1): 1455-1521. https://doi.org/10.1080/21501203.2024.2379476 White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A guide to methods and applications. Academic Press, San Diego, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 Wu SH, Chen YP Wei CL, Floudas D, Dai YC (2017) Two new species of Phanerochaete (Basidiomycota) and redescription of P robusta. Mycological progress 17: 425-435. https://doi.org/10.1007/s11557-017-1368-z Wu SH, Chen CC, Wei CL (2018) Three new species of Phanerochaete (Polyporales, Ba- sidiomycota). MycoKeys 41: 91-106. https://doi:10.3897/MycoKeys.41.29070 Wu F, Man XW, Tohtirjap A, Dai YC (2022a) A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. Forest Eco- systems 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051 Wu F, Zhou LW, Vlasak J, Dai YC (2022b) Global diversity and systematics of Hymeno- chaetaceae with poroid hymenophore. Fungal Diversity 113: 1-192. https://doi. org/10.1007/s13225-021-00496-4 Xu YL, Cao YF, Nakasone KK, Chen CC, He SH (2020) Taxonomy and phylogeny of Pha- nerochaete sensu stricto (Polyporales, Basidiomycota) with emphasis on Chinese collections and descriptions of nine new species. Mycosphere 11(1): 1527-1552. https://doi.org/10.5943/mycosphere/11/1/12 Yang Y, Jiang QQ, Li Q, Yang JW, Cha L,Cheng LJ, Yang SQ, Zhao CL, Zhou HM (2023) Molecular systematics and taxonomic analyses of three new wood-Inhabiting fun- gi of Hyphoderma (Hyphodermataceae, Basidiomycota). Journal of Fungi 9: 1044. https://doi.org/10.3390/jof9111044 Yang Y, Li R, Jiang QQ, Zhou HM, Muhammad A, Wang Hu, Zhao CL (2024) Phylogenetic and taxonomic analyses reveal three new wood-Inhabiting fungi (Polyporales, Basidi- omycota) in China. Journal of Fungi 10: 55. https://doi.org/10.3390/jof10010055 Yu J, Cai J, Liu HG, Zhao CL (2023) Molecular systematics and taxonomy reveal three new taxa in Phanerochaete (Phanerochaetaceae, Polyporales) from the Yunnan- Guizhou plateau, East Asia. Mycological Progress 22: 59. https://doi.org/10.1007/ $11557-023-01903-7 Yuan Y, Chen JJ, He SH (2017) Geliporus exilisporus gen. et comb. nov., a xanthochroic polypore in Phanerochaetaceae from China. Mycoscience 58: 197-203. https://doi. org/10.1016/j.myc.2017.01.006 MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 993 Ying Xu et al.: Fungal deversity Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomyco- ta) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93-100. https://doi.org/10.1007/s11557-016-1259-8.s Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023a) Multi-gene phylogeny and taxon- omy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomyco- ta). Journal of Fungi 9(3): 320. https://doi.org/10.3390/jof9030320 Zhao H, Nie Y, Zong TK, Wang K, Lv ML, Cui YJ, Tohtirjap A, Chen JJ, Zhao CL, Wu F, Cui BK, Yuan Y, Dai YC, Liu XY (2023b) Species diversity, updated classification and diver- gence times of the phylum Mucoromycota. Fungal Diversity 123: 49-157. https://doi. org/10.1007/s13225-023-00525-4 Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore funga and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystem 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200 Zhou HM, Zhang XC, Li JT, Wu F, Zhao CL (2024) Morphological characteristics and phy- logenetic analyses revealed four new wood inhabiting fungi (Agaricomycetes, Basid- iomycota) in Xizang Autonomous Region, China. MycoKeys 106: 201-224. https:// doi.org/10.3897/MycoKeys.106.125831 MycoKeys 113: 263-294 (2025), DOI: 10.3897/mycokeys.113.140624 794