683 MycoKeys MycoKeys 114: 177-212 (2025) DOI: 10.3897/mycokeys.114.145368 Research Article Morphological characteristics and phylogenetic analyses revealed five new species (Basidiomycota) from Southwestern China Ali Yang'”", Lu Wang?®, Yongjun Hu2, Yingtao Jiang'?, Guiying Shi', Changlin Zhao?® 1 College of Horticulture, Gansu Agricultural University, Lanzhou 730000, China 2 Department of Edible Fungi, Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China 3 College of Forestry, Southwest Forestry University, Kunming 650224, China Corresponding author: Guiying Shi (shigy@gsau.edu.cn); Changlin Zhao (fungi@swfu.edu.cn) OPEN Qrceess This article is part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam Academic editor: Samantha C. Karunarathna Received: 26 December 2024 Accepted: 28 January 2025 Published: 28 February 2025 Citation: Yang A, Wang L, Hu Y, Jiang Y, Shi G, Zhao C (2025) Morphological characteristics and phylogenetic analyses revealed five new species (Basidiomycota) from Southwestern China. MycoKeys 114: 177-212. https://doi.org/10.3897/ mycokeys.114.145368 Copyright: © Ali Yang et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract In the present study, five new wood-inhabiting fungal species, Conferticium albocremeum (Stereaceae, Russulales), Dendrocorticiopsis luteoalba (Punctulariaceae, Corticiales), Eichleriella biluoxueshanensis (Auriculariaceae, Auriculariales), Gloeohypochnicium yunnanense (Incertae sedis, Russulales), and Punctularia nigrodontea (Punctulariaceae, Corticiales), collected from southern China, are proposed based on a combination of morphological features and phylogenetic evidence. Conferticium albocremeum is char- acterized by membranaceous and smooth basidiomata with white to cream surface and ellipsoid and verrucose basidiospores (9-11 x 5-7 um); Dendrocorticiopsis luteoalba is characterized white to buff, membranaceous basidiomata and ellipsoid, thin-walled and smooth basidiospores (7-8 x 4.5-5.5 um); Eichleriella biluoxueshanensis is character- ized by coriaceous and grandinioid basidiomata with buff to cinnamon-buff hymeno- phore and allantoid, thin-walled basidiospores (13.5-17.5 x 7-9 um); Gloeohypochnici- um yunnanense is characterized by buff to cream, coriaceous and smooth basidiomata and globose, thick-walled and warted basidiospores (10-12 x 10-11.5 um), and Punct- ularia nigrodontea is characterized by resupinate to effused-reflexed basidiomata and ellipsoid, thin-walled and smooth basidiospores (8.5-10 x 5-6 um). Sequences of the internal transcribed spacers (ITS) and the large subunit (nLSU) of the nuclear ribosomal DNA (rDNA) markers of the studied samples were generated. Phylogenetic analyses performed based on the ITS+nLSU rDNA gene regions with the maximum likelihood, maximum parsimony, and Bayesian inference methods revealed that five new species belong to the genera Conferticium, Dendrocorticiopsis, Eichleriella, Gloeohypochnicium, and Punctularia. Descriptions, illustrations, phylogenetic analysis results, and a compar- ison with closely related taxa of the five new species are provided. Key words: Biodiversity, molecular systematics, new taxa, taxonomy, wood-inhabiting fungi, Yunnan Province * These authors have contributed equally to this work and share the first authorship. 177 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Introduction The kingdom of fungi is one of the most diverse groups of living organisms on earth; its members occur across a broad range of ecosystems, including extreme environments, with an estimated number of species in the range of 2-3 million (Bhunjun et al. 2022, 2024; Wijayawardene et al. 2022, 2024; Dong et al. 2024a; Hyde et al. 2024a, b). Based on molecular phylogenetic evidence, numerous new taxa have been discovered in the past ten years (Wang and Cai 2023; Yuan et al. 2023; Zhao et al. 2023; Deng et al. 2024b; Dong et al. 2024b; He et al. 2024; Qin et al. 2024). The genus Conferticium Hallenb. (Stereaceae, Russulales) was erected in 1980 and typified by C. insidiosum (Bourdot & Galzin) Hallenb., which is characterized by the resupinate basidiomes with membranaceous to ceraceous, smooth to tu- berculate hymenophore, a monomitic simple-septate hyphae, and the numerous cylindrical, sinuous gloeocystidia (Bernicchia and Gorjon 2010). Based on the MycoBank database (http://www.mycobank.org, accessed on 27 January 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 27 Janu- ary 2025), six specific and infraspecific names were registered in Conferticium, and it is a small genus only including five widely recognized species up to now. The genus Dendrocorticiopsis Sheng H. Wu et al. (Punctulariaceae, Corti- ciales) was introduced by Sheng H. Wu, with the description of one species, D. orientalis Sheng H. Wu et al. (Wei et al. 2022). It is conventionally defined by having strictly resupinate basidiomata, an ivory hymenophore, a monomitic hyphal system with clamped hyphae, encrusted cystidia, dendrohyphidia, and ellipsoid to ovoid basidiospores (Wei et al. 2022). Based on the MycoBank da- tabase (http://www.mycobank.org, accessed on 27 January 2025) and the In- dex Fungorum (http://www.indexfungorum.org, accessed on 27 January 2025), Dendrocorticiopsis is a monotypic genus. The genus Eichleriella Bres. was introduced in 1903, typified by E. incarnata Bres., and it is a species-rich genus that belongs to Auriculariaceae (Auricularia- les). The genus is characterized by annual or short-living perennial, leathery to cer- aceous basidiomata with smooth, pale-colored hymenophore (in some species covered by spines), a monomitic to dimitic hyphal system with clamped genitive hyphae, cystidia often present, longitudinally septate basidia with 2- or 4-celled, and colorless, cylindrical to narrowly cylindrical basidiospores (Malysheva and Spirin 2017; Li et al. 2023; Deng et al. 2024a). Based on the MycoBank database (http://www.mycobank.org, accessed on 27 January 2025) and the Index Fungo- rum (http://www.indexfungorum.org, accessed on 27 January 2025), the genus Fichleriella has 32 specific and registered names, with 22 species accepted world- wide (Malysheva and Spirin 2017, Liu et al. 2019, Li et al. 2023; Deng et al. 2024a). The genus Gloeohypochnicium (Parmasto) Hjortstam (Russulales), typified by G. analogum (Bourdot & Galzin) Hjortstam (Bernicchia and Gorjén 2010), is characterized by the resupinate basidiomes with smooth to tuberculate hy- menophore, a monomitic hyphal system with clamps on generative hyphae, the numerous cylindrical, sinuous gloeocystidia, and globose to ellipsoid, thick- walled, warted basidiospores (Bernicchia and Gorjo6n 2010). Based on the My- coBank database (http://www.mycobank.org, accessed on 27 January 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 27 Jan- uary 2025), Gloeohypochnicium has registered two specific and infraspecific MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 178 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... names, and it is a small genus only including two widely recognized species so far (Bernicchia and Gorjon 2010; He et al. 2024). Punctularia Patouillard (Punctulariaceae, Corticiales) was typified with P. tuberculosa (Pat.) Pat. & Lagerh. (current name P. atropurpurascens (Berk. & Broome) Petch, which is characterized by resupinate to effused-reflexed basid- iomata, gelatinous when fresh, rigid upon drying, tuberculate or radial ridges hymenophore, a monomitic hyphal system with clamped generative hyphae, yellowish to brown dendrohyphidia, and thin-walled, smooth, ellipsoid, acyano- philous basidiospores (Bernicchia and Gorjén 2010). Based on the MycoBank database (http://www.mycobank.org, accessed on 27 January 2025) and the Index Fungorum (http://www.indexfungorum.org, accessed on 27 January 2025), Punctularia has registered six specific and infraspecific names, and three species have been recognized worldwide up to now (Bernicchia and Gor- jon 2010; Guan et al. 2021; He et al. 2024). Molecular phylogenetic approaches have revolutionized the fungal taxonomy of Basidiomycota in the last decades, and these advances have greatly enhanced our knowledge of species diversity in Basidiomycota (Licking et al. 2021; He et al. 2022; Wang et al. 2023; Dong et al. 2024a). The family Auriculariaceae is the largest and best-supported clade in the order Auriculariales and consists of a large group of wood-decaying fungi with varied basidiomes (Dong et al. 2024b; He et al. 2024). Corticioid and stereoid taxa are numerous in Auriculariaceae and are typically classified into three main genera: Eichleriella Bres., Exidiopsis (Bref.) A. Mgller, and Heterochaete Pat. (Malysheva and Spirin 2017; Li et al. 2023; Deng et al. 2024a). DNA sequence-based classification and identification of the genus Fichleriella (Auriculariaceae) have reported that six species have been described from China recently (Li et al. 2023; Deng et al. 2024a). Corticiales K.H. Larss. is a small order of corticioid fungi with four families viz. Corticiaceae Herter, Dendro- miniaceae Ghobad-Nejhad, Punctulariaceae Donk, and Vuilleminiaceae Maire ex Lotsy (Wei et al. 2022; He et al. 2024). Most of the previous studies of Punctula- riaceae focused on European species (Bernicchia and Gorjo6n 2010; Gorjon and Bernicchia 2017). In China, the research on this family mainly focuses on the genera Dendrocorticiopsis and Punctularia; some new taxa have been proposed based on a combination of morphological features and molecular data (Guan et al. 2021; Wei et al. 2022; He et al. 2024). Members of the Russulales Kreisel ex P.M. Kirk, P.F. Cannon & J.C. David exhibit diverse basidiome structures, which can range from agaricoid to discoid, clavarioid, polyporoid, corticoid, and even gasteroid, and the multigene phylogenetic analyses clarify the evolutionary re- lationships of some small genera in the latest study (Yuan et al. 2021; He et al. 2024). According to recent research in molecular systematics, the genus Con- ferticium (Stereaceae, Russulales) has reported one new species, C. fissuratum Xin Yang & C.L. Zhao from Yunnan Province (Bernicchia and Gorjén 2010; Shen et al. 2024). The taxonomic status of the genus Gloeohypochnicium is unclear, and it was only placed in the order Russulales, and it is a mystery genus; no new taxa in the genus have been described for nearly a decade (He et al. 2022, 2024). However, the phylogeny of the genus Gloeohypochnicium is ambiguous due to a lack of molecular evidence and morphological data. In this paper, we presented the morphological characteristics and multigene molecular analyses with ITS and nLSU DNA markers to support the taxonomy and phylogenetic position of five new species. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 179 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Materials and methods Sample collection and herbarium specimen preparation Fresh basidiomata growing on angiosperm branches were collected from De- hong, Diging, Tengchong, and Xishuangbanna of Yunnan Province, PR. China. The samples were photographed in situ, and fresh macroscopic details were re- corded. Photographs were recorded using a Jianeng 80D camera (Tokyo, Japan). Specimens were dried in an electric food dehydrator at 45 °C (Hu et al. 2022), then the specimens were sealed in an envelope and zip-lock plastic bags and labeled (Zhao et al. 2023). The dried specimens were deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. Morphology The macromorphological descriptions were based on field notes and photos captured in the field and lab. The color terminology follows Petersen (1996). The micromorphological data were obtained from the dried specimens ob- served under a Nikon Eclipse E100 light microscope following Zhao and Wu (2017). The following abbreviations are used: KOH = 5% potassium hydroxide water solution, CB—- = acyanophilous, IKI+ = amyloid, IKI- = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for all spores), W = mean spore width (arithmetic average for all spores), Q = variation in the L/W ratios between the specimens studied, and n = a/b (number of spores (a) mea- sured from given number (b) of specimens). DNA extraction, PCR, and sequencing The CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to obtain genomic DNA from the dried specimens according to the manufacturer's instructions. The nuclear ribosomal internal transcribed spacer (ITS) region was amplified with the primer pair ITS5/ITS4 (White et al. 1990). The nuclear large subunit (nLSU) region with the primer pair LROR/LR7 (Vilgalys and Hester 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s, and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min, and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and sequenced at Kunming Tsingke Biological Technology Lim- ited Company (Yunnan Province, PR. China). All newly generated sequences were deposited in GenBank (Table 1). Molecular phylogeny The sequences were aligned in MAFFT version 7 using the G-INS-i strategy (Katoh et al. 2019). The alignment was adjusted manually using AliView ver- sion 1.27 (Larsson 2014). (1) Hyphoderma cremeoalbum (Hohn. & Litsch.) Julich was assigned as an outgroup to root trees in the ITS+nLSU analysis (Fig. 1) (Dong et al. 2024a); (2) Vararia fissurata Y.L. Deng & C.L. Zhao were MycoKeys 114; 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 180 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Table 1. Names, voucher numbers, references, and corresponding GenBank accession numbers of the taxa used in the phylogenetic analyses. [* indicates type materials; — indicates sequence unavailability]. Taxa Acanthobasidium bambusicola Acanthobasidium phragmitis Acanthophysium bisporum Acanthophysium lividocaeruleum Adustochaete punctata Aleurobotrys botryosus Aleurodiscus bambusinus Alloexidiopsis australiensis Alloexidiopsis calcea Alloexidiopsis grandinea Alloexidiopsis xantha Alloexidiopsis yunnanensis Amphistereum leveilleanum Amphistereum schrenkii Amylostereum chailletii Amylostereum laevigatum Aporpium caryae Aporpium caryae Artomyces niveus Artomyces yunnanensis Auricularia auricula-judae Auricularia cornea Auricularia mesenterica Auricularia polytricha Auricularia tibetica Australovuilleminia coccinea Basidiodesertica hydei Bondarzewia occidentalis Bondarzewia podocarpi Conferticium albocremeum Conferticium albocremeum Conferticium albocremeum Conferticium albocremeum Conferticium fissuratum Conferticium fissuratum Conferticium heimii Conferticium ochraceum MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 Voucher no. He2357 CBS 233.86 T614 FP-100292 CLZhao 29675 He2712 He4261 LWZ 20180514-18 LWZ 20180904-14 CLZhao 33798 CLZhao 25093 CLZhao 8106 FP-106715 HHB 8476 NH 8031 NH 12863 Miettinen 14774 WD 2207 CLZhao 19094 CLZhao 7118 JT 04 Dai 13621 FO 25132 TUFC 12920 Dai 13336 BCP5551 SQUCC 15289 AFTOL-ID 452 Dai 9261 CLZhao 35693* CLZhao 36343 CLZhao 37176 CLZhao 39238 CLZhao 34654 CLZhao 34662 CBS321.66 CLZhao 21515 Locality China France USA USA China China China China China China China China USA USA Finland Japan China China UK China Germany Japan China New Zealand Oman Canada China China China China China China China African China GenBank accession no. ITS KU559343 PP852052 KX306877 KY706207 OM801934 OM801935 PP852058 PP852060 MT215569 KX262119 KX262130 AF506406 AF506407 JX044145 AB87/1751 OR094479 OR094476 KT152099 MZ618936 AF291271 AB87/1752 MZ618943 HM046875 MW077150 DQ200923 KJ583207 PQ197729 PQ783832 PQ783833 PQ783834 PQ201856 PQ201857 AF506381 ON211619 nLSU KU574833 AY039305 AY039327 AY039319 PP849035 KY450788 KY706219 OM801919 OM801920 PP849040 MT215565 KX262168 KX262178 AF506406 AF506407 AB871730 OR461459 OR461461 KT152115 MZ669905 AF291292 AB87/1733 MZ669915 HM046930 MW077159 DQ234539 KJ583221 PQ783842 PQ783843 PQ783844 AF506381 References Tian et al. 2018 Wu et al. 2001 Maekawa et al. 2023 Maekawa et al. 2023 Dong et al. 2024b Tian et al. 2018 Tian et al. 2018 Liu et al. 2022 Liu et al. 2022 Dong et al. 2024b Dong et al. 2024b Guan et al. 2020 Malysheva and Spirin 2017 Malysheva and Spirin 2017 Larsson and Larsson 2003 Larsson and Larsson 2003 Miettinen et al. 2012 Sotome et al. 2014 Dong et al. 2024a Dong et al. 2024a Tohtirjap et al. 2023 Tohtirjap et al. 2023 WeifS and Oberwinkler 2001 Sotome et al. 2014 Tohtirjap et al. 2023 Ghobad-Nejhad et al. 2010 Wei et al. 2022 Zhou et al. 2021 Zhou et al. 2021 Present study Present study Present study Present study Shen et al. 2024 Shen et al. 2024 Tian et al. 2018 Present study 181 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Taxa Conferticium ochraceum Conferticium ravum Conferticium ravum Corticium roseum Corticium thailandicum Cytidia salicina Dendrocorticiopsis luteoalba Dendrocorticiopsis orientalis Dendrocorticiopsis orientalis Dendrocorticium polygonioides Dendrocorticium roseocarneum Dendrominia dryina Dendrominia ericae Dentipellicula austroafricana Dentipellicula taiwaniana Dentipellopsis dacrydicola Dentipellopsis dacrydicola Disporotrichum dimorphosporum Disporotrichum dimorphosporum Fichleriella alliciens Eichleriella alliciens Eichleriella alpina Eichleriella bactriana Eichleriella bambusicola Eichleriella biluoxueshanensis Eichleriella biluoxueshanensis Eichleriella crocata Eichleriella crocata Eichleriella delicata Eichleriella delicata Eichleriella desertorum Eichleriella discolor Eichleriella discolor Eichleriella flavida Eichleriella leucophaea MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 Voucher no. G0O7_P24A CBS:125849 NH13291 MG252 MG242 MG49 CLZhao 30380* He 4195 WEI 20-166 CBS:106.56 KUC20121109-32 MG159 MG162 Dai 12580 Dai 10867 Dai 12004 Dai 12010 CBS:419.70 CBS:433.85 He4055b HHB 7194 He 20120916-1 TAAM 104431 Dai 6391 CLZhao 34516* CLZhao 34793 He2969 TAAM 101077 CLZhao 25143 He3469 LR 49350 He4584 He4763 LR 49412 LE 303261 Locality Switzerland Estonia USA China Tailand Finland China China China France Korea France France Africa China Netherland USA Thailand USA China Uzbekistan China China China China Russia China China Namibia China China UK Russia GenBank accession no. ITS KT943933 MH863805 AF506382 MW805872 MW805868 GU590881 PQ783828 MW580926 MW580922 MH857525 KJ668559 JX892936 JX892938 KJ855274 JQ349115 JQ349104 MH859776 MH861895 MH178244 KX262120 MH178245 KX262138 MH178246 PQ783827 PQ787846 MH178248 KX262100 PQ757163 MH178250 KX262142 MH178252 MH178253 KX262137 KX262111 nLSU MH875269 AF506382 MW805836 MW805831 HM046921 PQ783838 MW580921 MW580924 MH869062 KJ668413 JX892937 JX892939 KJ855275 JQ349101 JQ349089 JQ349090 MH871538 MH873584 KX262169 MH178268 KX262186 PQ783837 MH178271 KX262147 MH178273 KX262190 MH178275 MH178276 KX262185 KX262161 References Stroheker et al. 2018 Vu et al. 2019 Larsson and Larsson 2003 Ghobad-Nejhad et al. 2021 Ghobad-Nejhad et al. 2021 Wei et al. 2022 Present study Wei et al. 2022 Wei et al. 2022 Vu et al. 2019 Ghobad-Nejhad and Duhem 2014 Ghobad-Nejhad and Duhem 2014 Ghobad-Nejhad and Duhem 2014 Zhou et al. 2021 Zhou et al. 2021 Zhou and Dai 2013 Zhou and Dai 2013 Vu et al. 2019 Vu et al. 2019 Li et al. 2023 Malysheva and Spirin 2017 Li et al. 2023 Malysheva and Spirin 2017 Li et al. 2023 Present study Present study Li et al. 2023 Malysheva and Spirin 2017 Present study Li et al. 2023 Malysheva and Spirin 2017 Li et al. 2023 Li et al. 2023 Malysheva and Spirin 2017 Malysheva and Spirin 2017 182 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Taxa Eichleriella macrospora Eichleriella ochracea Eichleriella shearii Eichleriella shearii Eichleriella sicca Eichleriella sinensis Eichleriella sinensis Eichleriella sinensis EFichleriella tenuicula Fichleriella tenuicula Eichleriella xinpingensis Eichleriella xinpingensis Eichleriella yunnanensis EFichleriella yunnanensis Elmerina cladophora Elmerina sclerodontia Erythricium hypnophilum Erythricium laetum Exidia candida Exidia glandulosa Exidia pithya Exidia reflexa Exidia subglandulosa Exidiopsis effusa Gloeocystidiellum bisporum Gloeocystidiellum clavuligerum Gloeodontia eriobotryae Gloeodontia pyramidata Gloeohypochnicium analogum Gloeohypochnicium analogum Gloeohypochnicium yunnanense Gloeohypochnicium yunnanense Gloeophyllum abietinum Hericium abietis Hericium coralloides Heterobasidion annosum Heteroradulum australiense Heteroradulum degluben MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 Voucher no. He2189 SP467242 LR 23258 USJ 54609 OM 17349 CLZhao 29368 CLZhao 31647 He4196 CLZhao 35797 He3483 CLZhao 836 CLZhao 842 CLZhao 31317 CLZhao 31350 Miettinen 14314 Miettinen 16431 MG169 MG72 VS 3921 MW 355 MW 313 Dai 20833 Wu 270 OM 19136 KHL11135 FCUG2731 Dai 12080 LR15502 NZFS:4549 PDD:91626 CLZhao 30018 CLZhao 30049* H 22988 NH 6990 NH 282 Dai 20962 LWZ 20180512-25 LE 38182 Locality USA Brazil Costa Rica USA China China China China China China China China China Indonesia Malaysia France Russia Germany Germany China China Finland Norway Russia New Zealand New Zealand China China Switzerland Canada Sweden China Australia Sweden GenBank accession no. ITS MH178251 MK391514 KX262139 AF291284 KX262143 PQ757164 PQ757165 MH178254 PQ197731 MH178256 MK560879 MK560880 PP889850 PP889852 MG757509 MG757512 MW805858 GU590875 KY801867 AF291273 AF291275 MN850386 MN850381 KX262145 AY048877 AF310083 JQ349116 AF506446 MH409974 GQ411521 PQ783830 PQ783831 JX524619 AF506456 AF506459 ON417163 MZ325255 KX262112 nLSU MH178274 AF291335 KX262191 PQ757/166 MH178277 MH178279 MK560883 MK560884 PP897009 PP897010 MG757509 MG757512 MW805823 GU590878 KY801892 AF291319 AF291321 MN850362 MN850357 KX262193 AY048877 AF310083 JQ349103 AF506446 PQ783840 PQ783841 KC782733 AF506456 AF506459 ON417213 MZ310425 KX262162 References Li et al. 2023 Alvarenga et al. 2019 Malysheva and Spirin 2017 WeifS et al. 2001 Malysheva and Spirin 2017 Present study Present study Li et al. 2023 Present study Li et al. 2023 Liu et al. 2019 Liu et al. 2019 Deng et al. 2024a Deng et al. 2024a Malysheva et al. 2018 Malysheva et al. 2018 Ghobad-Nejhad et al. 2021 Ghobad-Nejhad et al. 2021 Spirin et al. 2018 Weif& et al. 2001 Weif et al. 2001 Ye et al. 2020 Ye et al. 2020 Malysheva and Spirin 2017 Larsson and Larsson 2003 Larsson and Larsson 2003 Zhou and Dai 2013 Larsson and Larsson 2003 Hood et al. 2018 Fukami et al. 2010 Present study Present study He et al. 2014 Zhou et al. 2021 Zhou et al. 2021 Liu et al. 2022 Li et al. 2022 Malysheva and Spirin 2017 183 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Taxa Heteroradulum kmetii Heteroradulum labyrinthinum Heteroradulum mussooriense Hyphoderma cremeoalbum Lactarius crocatus Lactarius deceptivus Laetisaria fuciformis Laetisaria roseipellis Lawreymyces palicei Lawreymyces palicei Lentinellus sublineolatus Lentinellus vulpinus Marchandiomyces aurantioroseus Marchandiomyces corallinus Megalocystidium diffissum Megalocystidium leucoxanthum Mycobernardia incrustans Mycobernardia incrustans Neoaleurodiscus fujii Neoaleurodiscus fujii Peniophora halimi Peniophora incarnata Protodaedalea foliacea Protodaedalea hispida Punctularia atropurpurascens Punctularia atropurpurascens Punctularia bambusicola Punctularia bambusicola Punctularia nigrodontea Punctularia strigosozonata Punctularia strigosozonata Punctulariopsis efibulata Punctulariopsis obducens Punctulariopsis subglobispora Russula blennia Russula pseudociliata Sclerotrema griseobrunneum Sclerotrema griseobrunneum Scytinostroma acystidiatum MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 Voucher no. He 4915 Yuan 1600 Dai 17193 CLZhao 17007 KVP08034 AFTOL-ID 682 CBS:182.49 CBS:299.82 Palice 2509 Palice 4369 TENN 059307 7267 FCUG 1166 JL128-98 V.Spirin4244 HK9808 CBS:172.36 Duhem 3613 He2921 Wu0807-41 CBS:864.84 CBS:398.50 Yuan 5691 WD 548 UC 2022981 WEI 17-662 CLZhao 4133 CLZhao 9098 CLZhao 30592* AFTOL-ID 1248 CBS:34534 Burdsall 8824 MG70 FCUG 2535 969/BB08.066 945/BB08.061 TN 2722 VS 7674 Dai 24608 Locality China China China China Thailand USA Netherlands Ecuador Ecuador Austria Sweden Sweden Sweden Sweden Canada France China Japan France France China Japan USA China China China China USA Ethiopia Argentina Switzerland Switzerland Canada Russia China GenBank accession no. ITS MH178262 KM379139 MH178265 OM985716 HQ318243 AY854089 MH856485 EU622846 AY542864 AY542865 NR119505 AY513230 KP864659 AY583327 MT477147 AF506420 MH855759 MW805860 KU559357 MH861845 MH856680 JQ764666 AB87/1768 KP814559 MW570883 MW559982 MW559983 PQ783829 DQ398958 MH855559 KR494276 HM046918 HM046917 MH545687 MH545688 KX262144 KX262140 0Q689127 nLSU MH178286 KM379140 MH178289 OM985753 HQ318151 AY631899 MH868023 EU622844 AY542864 AY542865 HM046929 AY583331 MT477147 AF506420 MH867272 MW805825 KU5S74845 FJ799924 MH873533 MH868197 JQ764644 AB87/1749 MW570888 MW559984 MW559985 PQ783839 AF518642 MH867064 KR494277 HM046933 HM046932 KU237556 KU237537 KX262192 KX262188 0Q629351 References Li et al. 2023 Yuan et al. 2018 Li et al. 2023 Dong et al. 2024a Wu et al. 2020 Wu et al. 2020 Vu et al. 2019 Vu et al. 2019 Licking and Moncada 2017 Liicking and Moncada 2017 Dong et al. 2024a Kneal and Smith 2015 Ghobad-Nejhad et al. 2021 DePriest et al. 2005 Spirin et al. 2021 Spirin et al. 2021 Vu et al. 2019 Ghobad-Nejhad et al. 2021 Dai et al. 2017 Dai et al. 2017 Vu et al. 2019 Vu et al. 2019 Zhou and Dai 2013 Sotome et al. 2014 Knijn & Ferretti 2018 Wei et al. 2022 Guan et al. 2021 Guan et al. 2021 Present study Wei et al. 2022 Vu et al. 2019 Wei et al. 2022 Ghobad-Nejhad et al. 2010 Guan et al. 2021 Wu et al. 2020 Wu et al. 2020 Malysheva and Spirin 2017 Malysheva and Spirin 2017 Zhang et al. 2023 184 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Taxa Scytinostroma bambusinum Sistotrema brinkmannii Stereodiscus pseudotrivialis Stereodiscus pseudotrivialis Stereum hirsutum Stereum sanguinolentum Terrestriporia alba Terrestriporia alba Tremellochaete atlantica Tremellochaete cilliata Tremellochaete japonica Vararia fissurata Vararia tropica Vuilleminia comedens Vuilleminia coryli Vuilleminia cystidiata Vuilleminia erastii Vuilleminia macrospora Vuilleminia nilsii Vuilleminia pseudocystidiata Waitea circinata Waitea guianensis Xylobolus frustulatus Xylobolus subpileatus GenBank accession no. Voucher no. Locality References ITS nLSU JXH 643 China OR510627 PP660873 Ji et al. 2024 236 Netherlands JX535169 JX535170 Alvarenga and Gibertoni 2021 SPG6799 Argentina OR506747 OR506751 Gorjon and Greslebin 2024 SPG6874 Argentina OR506744 OR506746 Gorjon and Greslebin 2024 CBS:108532 Russia MH862810 MH874407 Vu et al. 2019 CBS:529.50 Canada MH856746 MH868268 Vu et al. 2019 Dai 18546 Malaysia MT068562 MT068558 Wu et al. 2020 Dai 18547 Malaysia MT068563 MT068559 Wu et al. 2020 URM90199 Brazil MG594381 MG594383 Alvarenga et al. 2019 SP467241 Brazil MK391523 MK391529 Alvarenga et al. 2019 LE 303446 Russia KX262110 KX262160 Malysheva and Spirin 2017 CLZhao 8171 China 0Q025219 OR539503 Deng et al. 2024b CBS:704.81 France MH861447 MH873189 Vu et al. 2019 AFTOL-ID 1247 fe DQ398959 AF518666 Wei et al. 2022 MG136 Turkmenistan | JN387996 JN388005 Ghobad-Nejhad and Ginns 2012 KUC20131022-26 Korea KJ668433 KJ668285 Wei et al. 2022 MG97 Canada JN387998 JN388007 Ghobad-Nejhad and Ginns 2012 MG167 France JX892940 JX892941 Ghobad-Nejhad and Duhem 2014 MG171 France JX892947 JX892948 Ghobad-Nejhad and Duhem 2014 MG69 France HM046888 HM046928 Ghobad-Nejhad et al. 2010 CBS:472.82 USA MH861518 MH873265 Vu et al. 2019 GUY13-110 Guiana MwW449090 MwW449101 Wei et al. 2022 He2231 USA KU881905 KU574825 Tian et al. 2018 FP-106735 USA = AY039309 Tian et al. 2018 assigned as an outgroup to root trees following the ITS+nLSU analysis (Fig. 2) (Deng et al. 2024b); (3) Gloeophyllum abietinum (Bull.) P. Karst. was assigned as an outgroup to root trees following the ITS+nLSU analysis (Fig. 3) (He et al. 2014); (4) Sistotrema brinkmannii (Bres.) J. Erikss. was assigned as an outgroup to root trees following the ITS+nLSU analysis (Fig. 4) (Alvarenga and Gibertoni 2021); (5) Adustochaete punctata J.H. Dong & C.L. Zhao were assigned as an outgroup to root trees following the ITS+nLSU analysis (Fig. 5) (Dong et al. 2024b). Maximum parsimony (MP), maximum likelihood (ML), and Bayesian infer- ence (BI) analyses were applied to the combined datasets following a previous study (Wu et al. 2022; Dong et al. 2024a), and the tree construction procedure was performed in PAUP* version 4.0610 (Swofford 2002). All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 185 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... sequence additions. Max trees were set to 5000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was as- sessed using bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics, tree length (TL), consistency index (Cl), retention in- dex (RI), rescaled consistency index (RC), and homoplasy index (HI) were calcu- lated for each maximum parsimonious tree generated. The multiple sequence alignment was also analyzed using maximum likelihood (ML) in RAxML-HPC2 (Miller et al. 2012). Branch support (BS) for ML analysis was determined by 1000 bootstrap replicates. MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolu- tion model for each dataset for Bayesian inference (BI), which was performed using MrBayes 3.2.7a with a general time reversible model of DNA substitution and a gamma distribution rate variation across sites (Ronquist et al. 2012). Four Markov chains were run twice from a random starting tree for 0.4 million generations of the datasets (Fig. 1), 0.4 million generations of the datasets (Fig. 2), 1.6 million generations of the datasets (Fig. 3), 0.8 million generations of the datasets (Fig. 4), and for 0.6 million generations of the datasets (Fig. 5), and the tree was sampled every 1000 generations. The first one-fourth of all generations were discarded as burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received a maximum likelihood bootstrap value (BS) =>70%, maximum parsimony bootstrap value (BT) >50%, or Bayesian posterior proba- bilities (BPP) 20.95. Results The phylogeny of Conferticium The datasets based on ITS+nLSU (Fig. 1) comprise sequences from 44 fun- gal specimens representing 39 species. The datasets had an aligned length of 2,270 characters, of which 1,183 characters are constant, 293 are variable and parsimony-uninformative, and 794 are parsimony-informative. Maximum parsi- mony analysis yielded 1 equally parsimonious tree (TL = 4447, Cl = 0.4160, H = 0.5840, RI = 0.5275, RC = 0.2194). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard deviation of split frequencies of 0.008678 (BI), and the effective sample size (ESS) across the two runs is double the average ESS (avg ESS) = 144.5. The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that the new species Con- ferticium albocremeum grouped into the genus Conferticium and clustered into the family Stereaceae (Russulales), in which it was retrieved as a sister to C. heimii (Boidin) Sheng H. Wu. The datasets based on ITS+nLSU (Fig. 2) comprise sequences from 31 fun- gal specimens representing 23 species. The datasets had an aligned length of 2,136 characters, of which 1,456 characters are constant, 298 are variable and parsimony-uninformative, and 382 are parsimony-informative. Maximum parsi- mony analysis yielded 1 equally parsimonious tree (TL = 1491, Cl = 0.6237, HI = 0.3763, RI = 0.5681, RC = 0.3544). Bayesian analysis and ML analysis result- ed in a similar topology as MP analysis with an average standard deviation of split frequencies of 0.013157 (BI), and the effective sample size (ESS) across MycoKeys 114; 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 186 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... 100/99/1.00 Vararia fissurata 100/99/1.00 Vararia tropica CBS =F Scytinostroma acystidi 100/100/1.00 99/56/1.00 Scytinostroma bambusi 1 1 Peniophora halimi CBS:864.84 Ft Peniophora incarnata CBS:398.50 Fre 100/100/1.00 80/100/- Amylostereum chailletii NH 8031 ee Amylostereum laevigatum NI [SA - Russula pseudociliata 545/BB08.061 Switzerland 73/83/0.95 | Russula blennia 569/BB08.066 Switzerland 99/100/1.00 '___ Lactarius deceptivus AFTOL-ID 682 USA Lactarius crocatus KWP08034 Thailand 100/99/1.00 Dentipellopsis dacrydicola Dai 12004 Dentipellopsis dacrydicola Dai 12010 Artomyces yunnanensis CLZhao 7118 Artomyces niveus CLZhao 19094 na 100/98/1.00 99/9471.00) fe : Conferticium albocremeum CLZhao 35693 China 96/91/- | 100/100/1.00 |- Conferticium albocremeum CLZhao 36343 China 98/98/1.00 Conferticium heimii CBS321.66 African Conferticium ravum CBS:125849 Estonia Aleurodiscus bambusinus He4261 China Aleurodiscus canadensis Wul207-90 China 92/9571 00 99/10/1L00 [Stereum sanguinolentum CBS:529.50 Canada Stereum hirsutum CBS:108532 Russia Xylobolus frustulatus He2231 USA Xylobolus subpileatus FP-106735 USA Lentinellus sublineolatus TENN 059307 Austria 100/100/1.001 5 ontinellus vulpinus 7267 Sweden 100/100/1.00 Bondarzewia podocarpi Bondarzewia occiden 97/97/1.00 Heterobasidion annosum 100/100/1.00| 2e?"estriporia alba Dai 18546 | Terrestriporia alba Dai 18547 | Hericium abietis NH 6990 Canada 99/100/0.96|_ FHericium coralloides NH 282 Sweden h00/100/1,00 Dentipellicula austroafricana Dai 12580 Africa _ Dentipellicula taiwaniana Dai 10867 China Hyphoderma cremeoalbum CLZhao 17007 China 50 Peniophoraceae Incertae sedis Echinodontiaceae Russulaceae Incertae sedis Auriscalpiaceae Incertae sedis Stereaceae Auriscalpiaceae Bondarzewiaceae Terrestriporiaceae Hericiaceae Outgroup Figure 1. Maximum parsimony strict consensus tree illustrating the phylogeny of Conferticium and Gloeohypochnicium and related genera in the order Russulales, based on ITS+nLSU sequences; branches are labeled with maximum likeli- hood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. the two runs is double the average ESS (avg ESS) = 265.5. The phylogenetic tree (Fig. 2) inferred from ITS+nLSU sequences revealed that Conferticium al- bocremeum grouped into the genus Conferticium and clustered into the family Stereaceae, in which it was closely related to C. heimii. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 187 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... 39/82/- Stereum sanguinolentum CBS:529.50 Canada 83/55/0.96 Stereum hirsutum CBS:108532 Russia Acanthophysium bisporum T614 USA g6/s0/1.oo7 Aobolus frustulatus He2231 USA 74/71/0.99|' Xvlobolus subpileatus FP-106735 USA Acanthophysium lividocaeruleum FP-100292 USA 91/6/1100 Aleurodiscus bambusinus He4261 China Aleurodiscus canadensis Wu1207-90 China Conferticium albocremeum CLZhao 36343 China 94/93/0908, Conferticium albocremeum CLZhao 37176 China Conferticium albocremeum CLZhao 39238 China Conferticium albocremeum CLZhao 35693 China -145/0.98 Conferticium heimii CBS321.66 African 1oo/100h1.o0f Conferticium fissuratum CLZhao 34654 China Conferticium fissuratum CLZhao 34662 China 84-1 Conferticium ravum NH13291 USA aaa Conferticium ravum CBS:125849 Estonia Conferticium ochraceum CLZhao 21515 China 100/109/1.091 Conferticium ochraceum GO7_P24A Switzerland 100/95/1.001 Megalocystidium leucoxanthum T1K9808 Sweden Megalocystidium diffissum V Spirin4244 Sweden 87/100/1.00 Stereaceae -/-/0.97, Aleurobotrys botryosus He2712 China — 100/100/1.00| Ste”eodiscus pseudotrivialis SPG6874 Argentina Stereodiscus pseudotrivialis SPG6874 Argentina 100/98/1.00[ Veoaleurodiscus fujii He2921 China Neoaleurodiscus fujii Wu0807-41 Japan Acanthobasidium bambusicola He2357 China Acanthobasidium phragmitis CBS 233.86 France Gloeocystidiellum bisporum KHL11135 Norway Gloeocystidiellum clavuligerum FCUG2731 Russia Vararia fissurata CLZhao 8171 China Outgroup 100/98/1.00 95/83/0.96 —--— 50 Figure 2. Maximum parsimony strict consensus tree illustrating the phylogeny of Conferticium and related genus in the family Stereaceae, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. The phylogeny of Dendrocorticiopsis The datasets based on ITS+nLSU (Fig. 3) comprise sequences from 44 fun- gal specimens representing 37 species. The datasets had an aligned length of 2,181 characters, of which 1,313 characters are constant, 232 are variable and parsimony-uninformative, and 736 are parsimony-informative. Maximum parsi- mony analysis yielded 1 equally parsimonious tree (TL = 3423, Cl = 0.4368, HI = 0.5632, RI = 0.5695, RC = 0.2488). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard deviation of split frequencies of 0.013154 (BI), and the effective sample size (ESS) across the two runs is double the average ESS (avg ESS) = 658. The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that the new species Dendro- corticiopsis luteoalba grouped into the genus Dendrocorticiopsis and clustered into the family Punctulariaceae (Corticiales), in which it was retrieved as a sis- ter to D. orientalis Sheng H. Wu et al. The phylogeny of Ejichleriella The datasets based on ITS+nLSU (Fig. 4) comprise sequences from 45 fun- gal specimens representing 43 species. The datasets had an aligned length of MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 188 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Vuilleminiaceae Punctulariaceae Corticiaceae Dendrominiaceae 100/100/1.00 Gloeophyllum abietinum H 22988 Switzerland Outgroup 50 Figure 3. Maximum parsimony strict consensus tree illustrating the phylogeny of Dendrocorticiopsis and Punctularia and related genera in the order Corticiales, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. 2,104 characters, of which 1,516 characters are constant, 254 are variable and parsimony-uninformative, and 334 are parsimony-informative. Maximum parsi- mony analysis yielded 1 equally parsimonious tree (TL = 1783 Cl = 0.4773, HI = 0.5227, RI = 0.5633, RC = 0.2688). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard deviation of split fre- quencies of 0.0024569 (BI), and the effective sample size (ESS) across the two runs is double the average ESS (avg ESS) = 361.5. The phylogenetic tree (Fig. 4) MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 189 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Auriculariaceae 99/100/1.00 Protodaedalea foliac Protodaedalea hispida WD 548 Sistotrema brinkmannii 236 Netherlands 100/100/1.00 Outgroup -—————_— 50 Figure 4. Maximum parsimony strict consensus tree illustrating the phylogeny of Eichleriella and related genera in the family Auriculariaceae, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value > 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. inferred from ITS+nLSU sequences revealed that Eichleriella biluoxueshanensis grouped into the genus Eichleriella and clustered into the family Auriculariaceae, in which it was retrieved as a sister to E. sinensis (Teng) S.H. He & Nakasone. The datasets based on ITS+nLSU (Fig. 5) comprise sequences from 31 fun- gal specimens representing 24 species. The datasets had an aligned length of 1,905 characters, of which 1,687 characters are constant, 101 are variable and parsimony-uninformative, and 117 are parsimony-informative. Maximum parsi- mony analysis yielded 1 equally parsimonious tree (TL = 402, Cl = 0.6542, HI = 0.3458, RI = 0.7495, RC = 0.4094). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard deviation of split frequencies of 0.009368 (BI), and the effective sample size (ESS) across the two runs is double the average ESS (avg ESS) = 264.5. The phylogenetic tree (Fig. 5) inferred from ITS+nLSU sequences revealed that Eichleriella biluoxue- shanensis grouped into the genus Ejchleriella, in which it was grouped with the clade comprising E. sinensis (Teng) S.H. He & Nakasone. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 190 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... -/61/4 16s!“ Eich 91/-/1.00 |+ Bichleriella 75/72i- 74)-pa{Ia E00 Eien 100/foo.oo| ichleriella tenn Eichleriella t. 1oo/100/1.00 | = Ettchleriella 98/99/1.00 Eichleriella | Eichleriella Eichleriella « | Fichleriella leu 89/79'1.00|_ Fichleriella bac. Eichleriella alliciens He4055b 9697.00 Fichleriella alliciens HHB 7194 U Eichleriella desertorum LR 4935 100/100/1.00 86/86/1.00 Adustochaete punctata CLZhao 29675 China Outgroup t—H 10 Figure 5. Maximum parsimony strict consensus tree illustrating the phylogeny of Eichleriella and related species in the genus Eichleriella, based on ITS+nLSU sequences; branches are labeled with maximum likelihood bootstrap value = 70%, parsimony bootstrap value = 50%, and Bayesian posterior probabilities = 0.95. The phylogeny of Gloeohypochnicium The datasets based on ITS+nLSU (Fig. 1) comprise sequences from 44 fungal specimens representing 39 species. The datasets had an aligned length of 2,270 characters, of which 1,183 characters are constant, 293 are variable and parsi- mony-uninformative, and 794 are parsimony-informative. Maximum parsimony analysis yielded 1 equally parsimonious tree (TL = 4447, Cl = 0.4160, HI = 0.5840, RI = 0.5275, RC = 0.2194). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard deviation of split frequencies of 0.008678 (BI), and the effective sample size (ESS) across the two runs is dou- ble the average ESS (avg ESS) = 144.5. The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that Gloeohypochnicium yunnanense grouped into the genus Gloeohypochnicium and clustered into the order Russulales, in which it was Closely related to G. analogum (Bourdot & Galzin) Hjortstam. The phylogeny of Punctularia The datasets based on ITS+nLSU (Fig. 3) comprise sequences from 44 fun- gal specimens representing 37 species. The datasets had an aligned length of MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 191 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... 2,181 characters, of which 1,313 characters are constant, 232 are variable and parsimony-uninformative, and 736 are parsimony-informative. Maximum par- simony analysis yielded 1 equally parsimonious tree (TL = 3423, Cl = 0.4368, HI = 0.5632, RI = 0.5695, RC = 0.2488). Bayesian analysis and ML analysis resulted in a similar topology as MP analysis with an average standard devia- tion of split frequencies of 0.013154 (Bl), and the effective sample size (ESS) across the two runs is double the average ESS (avg ESS) = 658. The phyloge- netic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that Punctularia nigrodontea grouped into the genus Punctularia and clustered into the family Punctulariaceae (Corticiales), in which it was grouped with the clade compris- ing P. atropurpurascens (Berk. & Broome) Petch, P bambusicola C.L. Zhao and P. strigosozonata (Schwein.) P.H.B. Talbot. Taxonomy Conferticium albocremeum L. Wang & C.L. Zhao, sp. nov. MycoBank No: 856958 Figs 6-8 Typification. CHINA. Yunnan Province » Xishuangbanna, Wild Elephant Valley, GPS coordinates: 22°10'N, 100°51'E, altitude: 900 m asl., on the fallen angio- sperm branch, leg. C.L. Zhao, 25 January 2024 CLZhao 35693 (SWFC!). Etymology. Albocremeum (Lat.) refers to the new species having white to cream hymenophore. Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 10 cm long, 2 cm wide, and 700 um thick. Hy- menophore smooth, white (60) to cream (4A2/3) when fresh, cream (4A2/3) upon drying. Sterile margin narrow, cream (4A2/3), up to 1 mm. Hyphal system. Monomitic; generative hyphae with simple-septa, colorless, thin-walled, smooth, rarely branched, interwoven, IKI+, CB-, 2-3 um in diame- ter; tissues unchanged in KOH. Hymenium. Gloeocystidia subclavate, flexuous, colorless, mostly constrict- ed in the middle, thin-walled, smooth, 33-47.5 x 5-8 um. Basidia subcylindrical to subclavate, slightly flexuous, with a basal simple septum and four sterigma- ta, 22-36 x 4.5-7 um; basidioles numerous, in shape similar to basidia. Figure 6. Basidiomata of Conferticium albocremeum (holotype CLZhao 35693). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 192 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... C Figure 7. Microscopic structures of Conferticium albocremeum (holotype CLZhao 35693): basidiospores (A); basidia and basidioles (B); gloeocystidia (C); a section of the hymenium (D). Scale bars: 10 um (A-D). Spores. Basidiospores ellipsoid with a distinct apiculus, colorless, thin- walled, finely verrucose but appearing smooth by light microscope, IKI+, CB-, 9-11 x 5-7 um, L = 9.82 um, W = 5.84 um, Q = 1.36-1.68 (n = 90/3). Additional specimens examined (paratypes). CHINA. Yunnan Province ° Dehong, Mang City, Mengga Town, Tongbiguan Provincial Nature Reserve, GPS coordinates: 24°46'N, 97°34'E, altitude: 1300 m asl., on the fallen angio- sperm branch, leg. C.L. Zhao, 29 June 2024, CLZhao 36343 + Dehong, Yingji- ang County, Tongbiguan Provincial Nature Reserve, GPS coordinates: 25°50'N, 97°36'E, altitude: 1000 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 2 July 2024, CLZhao 37176 * Tengchong, Tuantian Town, Gaoligongshan Na- tional Nature Reserve, GPS coordinates: 25°27'N, 98°46'E, altitude: 2500 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 7 July 2024, CLZhao 39283 (SWFC!). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 193 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... A@ € @ - eS! a " 5 Figure 8. Sections of hymenium of Conferticium albocremeum (holotype CLZhao 35693): basidiospores (A); basidia (B); basidioles (C); gloeocystidia (D); a section of the generative hyphae (E). Scale bars: 10 um (A-E); 10 x 100. Dendrocorticiopsis luteoalba L. Wang & C.L. Zhao, sp. nov. MycoBank No: 856959 Figs 9-11 Typification. CHINA. Yunnan Province * Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates: 25°50'N, 97°36'E, altitude: 1000 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 19 July 2023, CLZhao 30380 (SWFC!). Etymology. Luteoalba (Lat.) refers to the new species having a white to buff hymenophore. Basidiomata. Annual, resupinate, closely adnate, membranaceous, without odor or taste when fresh, up to 6 cm long, 2 cm wide, and 300 um thick. Hy- menophore smooth, white (60) when fresh, white (60) to buff (4A4) upon dry- ing. Sterile margin narrow, white (60) to buff (4A4), up to 1 mm. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 194 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... A TEE Sst) ERS ; - = yee OO ees ght Meer a , ™ 4 esi a ae en Boe wie. | B ~9 . ie wah Neal 9 Suet ba shag hs : | ' OO ee Se ate - “ - aN a y # F me 7” ~ .« . eg “ Ae 7 ‘ Ea eo z eae r* TS ee BS gee 3 ; o UR : : Spek is , re aS SEE ag eo a : 4° a - x ‘oi : # re ® i 5 (= AE : 3 Ya | 4 ot De bo No a ie Figure 9. Basidiomata of Dendrocorticiopsis luteoalba (holotype CLZhao 30380). Scale bars: 1 cm (A); 1 mm (B). coo Nik ddd Bay Abe . am - F - ih A : a ea , 8 ‘ = E F Figure 10. Microscopic structures of Dendrocorticiopsis luteoalba (holotype CLZhao 30380): basidiospores (A); basidia and basidioles (B); dendrohyphidia (C); cystidia (D); gloeocystidia (E); a section of the hymenium (F). Scale bars: 10 um (A-F). Hyphal system. Monomitic; generative hyphae with clamp connections, col- orless, thin- to slightly thick-walled, smooth, branched, interwoven, usually with crystal masses, IKI-, CB-, 2.5-4 um in diameter; tissues unchanged in KOH. Hymenium. Cystidia are of two types: (1) capitate, apically with resinous ma- terials, gradually dissolving in KOH, colorless, thin-walled, smooth, 8.5-14 x MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 195 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... . >} i - ~ -_ . — Ri a ~ * lay Le ail el we * Ly /~ 4 J) | | , ' Bp! ta / 8 ‘ _ (| . ' Pm ot “4, Figure 11. Sections of hymenium of Dendrocorticiopsis luteoalba (holotype CLZhao 30380): basidiospores (A); basidia and basidioles (B); dendrohyphidia (C); gloeocystidia (D); cystidia (E); a section of generative hyphae (F). Scale bars: 10 ym (A-F); 10 x 100. 6.5-8.5 um; (2) gloeocystidia, clavate to subulate, slightly flexuous, colorless, thin-walled, smooth, 68.5-90 x 8-10 um. Dendrohyphidia numerous, thick- walled toward base, colorless, 16-19 x 2.5-3.5 um. Basidia subclavate to clav- ate, flexuous, with a basal clamp connection and four sterigmata, 15.5-28.5 x 4-5.5 um; basidioles numerous, in shape similar to basidia. Spores. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI-, CB-, (6.5-)7-8 x (4-)4.5—5.5 um, L = 7.29 um, W = 4.97um, Q = 1.47 (n = 30/1). Eichleriella biluoxueshanensis L. Wang & C.L. Zhao, sp. nov. MycoBank No: 856960 Figs 12-14 Typification. CHINA. Yunnan Province + Diging, Weixi County, Weideng, Songpo, GPS coordinates: 27°05'N, 99°13 'E, altitude: 1400 m asl., on the fallen angio- sperm branch, leg. C.L., 13 November 2023, CLZhao 34516 (SWFC!). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 196 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Figure 12. Basidiomata of Eichleriella biluoxueshanensis (holotype CLZhao 34516). Scale bars: 1 cm (A); 1 mm (B). 9 @ @ do @ @ i Figure 13. Microscopic structures of Eichleriella biluoxueshanensis (holotype CLZhao 34516): basidiospores (A); basidia and basidioles (B); cystidia (C); hyphidia (D); a section of the hymenium (E). Scale bars: 10 um (A-E). Etymology. Biluoxueshanensis (Lat.) refers to the locality (Biluoxueshan) of the holotype specimen. Basidiomata. Annual, resupinate, closely adnate, coriaceous, without odor or taste when fresh, up to 8 cm long, 2 cm wide, and 700 um thick. Hymeno- phore grandinioid, cream (4A2/3) to buff (4A4) when fresh, buff (4A4) to cin- namon-buff (4/5B4) upon drying. Sterile margin narrow, white (60) to cream (4A2/3), up to 1 mm. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 197 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Figure 14. Sections of hymenium of Eichleriella biluoxueshanensis (holotype CLZhao 34516): basidiospores (A); basidia (B); basidioles (C); cystidia (D); hyphidia (E); a section of the hymenium (F). Scale bars: 10 um (A-F); 10 x 100. Hyphal system. Dimitic; generative hyphae simple-septate, colorless, thin- walled, smooth, rarely branched, interwoven, 3-4 um in diameter; skeletal hyphae distinctly thick-walled, smooth, unbranched, interwoven, IKI-, CB-, 3-4 um in diameter; tissues unchanged in KOH. Hymenium. Cystidia subclavate, flexuous, colorless, thin-walled, smooth, 40-45.5 x 6-9.5 um. Basidia narrowly ovoid to ellipsoid, longitudinally septate, four-celled, 21-29 x 11.5-15 um; basidioles numerous, in shape similar to ba- sidia but smaller. Hyphidia arising from generative hyphae, nodulose, branched, colorless, thin-walled, 58-72.5 x 2.5—4 um in diameter. Spores. Basidiospores allantoid, colorless, thin-walled, smooth, usually with one or more oil drops, IKI-, CB-, (12—)13.5-17.5(-—18) x (6.5-)7-9(-9.5) um, L = 15.57 um, W = 7.99 um, Q = 1.95-2.06 (n = 60/2). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 198 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Additional specimen examined (paratype). CHINA. Yunnan Province * Diging, Weixi County, Zhonglu, Lagaluo, GPS coordinates: 27°9'N, 99°8'E, altitude: 1710 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 10 October 2023, CLZhao 34793 (SWFC!). Gloeohypochnicium yunnanense L. Wang & C.L. Zhao, sp. nov. MycoBank No: 856961 Figs 15-17 Typification. CHINA. Yunnan Province * Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates: 25°50'N, 97°36'E, altitude: 1000 m asl., on the dead bamboo, leg. C.L. Zhao, 18 July 2023, CLZhao 30049 (SWFC!). Etymology. Yunnanense (Lat.) refers to the locality “Yunnan Province” of the holotype specimen. Basidiomata. Annual, resupinate, closely adnate, coriaceous, without odor or taste when fresh, up to 5 cm long, 3 cm wide, and 600 um thick. Hymenophore smooth, slightly buff (4A4) when fresh, buff (4A4) to cream (4A2/3) upon dry- ing. Sterile margin narrow, white (60) to buff (4A4), up to 1 mm. Hyphal system. Monomitic; generative hyphae with clamp connections, col- orless, thick-walled, smooth, branched, interwoven, 1.5-4 um in diameter; IKI-, CB-, tissues unchanged in KOH. Hymenium. Cystidia subcylindrical to subulate, flexuous, thin-walled, en- crusted with whitish to yellowish crystals, 75-115.5 x 11.5-15 um. Basidia subcylindrical to clavate, slightly flexuous, a basal clamp connection and four sterigmata, 55.5-70 x 9.5-11 um; basidioles numerous, in shape similar to basidia but smaller. Spores. Basidiospores globose, colorless, thick-walled, warted, IKI-, CB-, (9.5-)10-12 x (9.5-)10-11.5 um, L = 10.91 um, W = 10.45 um, Q = 1.04-1.05 (n = 60/2). Additional specimen examined (paratype). CHINA. Yunnan Province * De- hong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordi- nates: 27°52'N, 97°38 E, altitude: 1000 m asl., on dead bamboo, leg. C.L. Zhao, 18 July 2023, CLZhao 30018 (SWFC)). Figure 15. Basidiomata of Gloeohypochnicium yunnanense (holotype CLZhao 30049). Scale bars: 1 cm (A); 1 mm (B). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 199 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Figure 16. Microscopic structures of Gloeohypochnicium yunnanense (holotype CLZhao 30049): basidiospores (A); ba- sidia and basidioles (B); cystidia (C); a section of the hymenium (D). Scale bars: 10 um (A-D). Punctularia nigrodontea L. Wang & C.L. Zhao, sp. nov. MycoBank No: 856962 Figs 18-20 Typification. CHINA. Yunnan Province * Dehong, Yingjiang County, Tongbiguan Provincial Nature Reserve, GPS coordinates: 25°50'N, 97°36, altitude: 1000 m asl., on the angiosperm trunk, leg. C.L. Zhao, 20 July 2023, CLZhao 30592 (SWFC)). Etymology. Nigrodontea (Lat.) refers to the new species having black basid- iomata. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 200 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Figure 17. Sections of hymenium of Gloeohypochnicium yunnanense (holotype CLZhao 30049): basidiospores (A); basid- ia (B); basidioles (C); gloeocystidia (D). Scale bars: 20 um (A-D); 10 x 100. Figure 18. Basidiomata of Punctularia nigrodontea (holotype CLZhao 30592). Scale bars: 1 cm (A, B); 1 mm (C, D). MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 201 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... B i \ Figure 19. Microscopic structures of Punctularia nigrodontea (holotype CLZhao 30592): basidiospores (A); basidia and basidioles (B); a section of the hymenium (C). Scale bars: 10 um (A-C). B: | Figure 20. Sections of hymenium of Punctularia nigrodontea (holotype CLZhao 30592): basidiospores (A); basidia and basidioles (B); a section of thin-walled generative hyphae (C); a section of thick-walled generative hyphae (D). Scale bars: 10 pm (A-D); 10 x 100. MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 202 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Basidiomata. Annual, resupinate to effused-reflexed, adnate but easily sepa- rable, gelatinous, without odor or taste when fresh, up to 7 cm long, 3 cm wide, and 600 um thick. Pileal surface smooth, rigid, fuscous (5/6F5) when fresh, fuscous (5/6F5) to black (51) upon drying; pileal back cushion-shaped grandin- ioid, rigid, black (51) when fresh, black (51) upon drying. Sterile margin narrow, black (51), up to 1 mm. Hyphal system. Monomitic; generative hyphae clamp connections, color- less, thin to thick-walled, smooth, rarely branched, interwoven, 3-7 um in diam- eter; IKI-, CB-, tissues unchanged in KOH. Hymenium. Cystidia absent. Basidia clavate, flexuous, with a basal clamp connection and four sterigmata, 16-25 x 3-4.5 um; basidioles numerous, in shape similar to basidia but smaller. Spores. Basidiospores ellipsoid, colorless, thin-walled, smooth, IKI-, CB-, 8.5- 10(-10.5) x (4.5-)5-6(-6.5) um, L = 9.24 um, W = 5.47 um, Q = 1.69 (n = 30/1). Discussion For fungal groups that are difficult to identify based on their morphological features, it is believed (and in most cases also proved) that the application of DNA sequences is able to delimit/recognize species much more easily and unequivocally (Wu et al. 2020; Bhunjun et al. 2024; He et al. 2022, 2024; Hyde et al. 2024a, b; Zhao et al. 2024; Zhou et al. 2024). Over time, understanding dif- ferent aspects of fungi (i.e., taxonomy, diversity, species number) has improved rapidly by incorporating molecular and bioinformatics tools with traditional ap- proaches (Cui et al. 2019; Wang et al. 2021; Hyde et al. 2023; Zhou et al. 2023; Dong et al. 2024a; Wang et al. 2024a; Wijayawardene et al. 2024). Phylogenetically, the phylogenetic tree (Figs 1, 2) inferred from ITS+nLSU se- quences revealed that the new species Conferticium albocremeum was nested into the family Stereaceae within the order Russulales, in which it was retrieved as a sister to C. heimii. However, C. heimii is distinguished from C. albocremeum by having a grayish orange hymenial surface and smaller basidiospores (5.3- 6.2 x 3.5-4.2 um; Wu 1996). Morphologically, C. fissuratum and C. ravum are similar to C. albocremeum by having finely verrucose, ellipsoid, and thin-walled basidiospores (Bernicchia and Gorjon 2010; Shen et al. 2024). However, C. fis- suratum differs in its tuberculate, rough, white to cream, and cracking hymenial surface and longer subcylindrical cystidia (37-54.5 x 4-8 um; Shen et al. 2024), and C. ravum differs in its smooth, brownish orange to grayish orange hyme- nial surface and bigger gloeocystidia (30-60 x 6-15 um; Bernicchia and Gorjon 2010). Phylogenetically, the multiple genes with ITS+nLSU analysis (Fig. 3) showed that the new species Dendrocorticiopsis luteoalba was nested into the family Punctulariaceae within the order Corticiales, and it is closely related with D. orientalis. Morphologically, D. luteoalba is similar to D. orientalis by having clav- ate apically with resinous cystidia and clavate to subclavate basidia (Wei et al. 2022). However, D. orientalis is delimited from D. luteoalba by its finely cracked, grayish ivory hymenial surface and smaller, ellipsoid to ovoid basidiospores (5-7 x 3.2-5.2 um; Wei et al. 2022). The phylogenetic tree (Figs 4, 5) inferred from ITS+nLSU sequences revealed that Eichleriella biluoxueshanensis grouped into the genus Eichleriella and clus- MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 903 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... tered into the family Auriculariaceae, in which it was grouped with the clade comprising E. sinensis. However, E. sinensis is distinguished from E. biluox- ueshanensis by having narrower basidiospores (10.5-16 x 5.5-7 um; Li et al. 2023). Morphologically, E. xinpingensis C.L. Zhao and E. yunnanensis Y.L. Deng & C.L. Zhao are similar to E. biluoxueshanensis by all having subcylindrical to allantoid, thin-walled, and smooth basidiospores (Liu et al. 2019; Deng et al. 2024a). However, E. xinpingensis differs in its soft, leathery to ceraceous, flesh- pink to clay-pink, and covered by blunt-pointed spines hymenial surface and shorter basidia (15-28 x 5—9 um; Liu et al. 2019), and E. yunnanensis differs in its cream to flesh-pink hymenial surface and smaller basidiospores (7.5-11.5 x 3.5-5 um; Deng et al. 2024a). The phylogenetic tree (Fig. 1) inferred from ITS+nLSU sequences revealed that Gloeohypochnicium yunnanense grouped into the genus Gloeohypochni- cium and clustered into the order Russulales, in which it was closely related to G. analogum. Morphologically, G. yunnanense is similar to G. analogum in that it has subglobose, thick-walled, and warted basidiospores (Bernicchia and Gorj6n 2010). However, G. analogum is delimited from G. yunnanense by its coriaceous, cream to ochraceous hymenial surface with a fibrillose margin and smaller gloeocystidia (40-60 x 6-10 um; Bernicchia and Gorjon 2010). Based on the ITS+nLSU sequence data (Fig. 3), Punctularia nigrodontea was nested into the family Punctulariaceae within the order Corticiales and grouped with the clade comprising P. atropurpurascens, P. bambusicola, and P. strigoso- zonata. Morphologically, P. nigrodontea is similar to P. atropurpurascens, P. bambusicola, and P. strigosozonata by having smooth, thin-walled, and ellip- soid basidiospores (Bernicchia and Gorjoén 2010; Guan et al. 2021). However, P. atropurpurascens is delimited from P. nigrodontea by having the effuse-reflexed and reddish-brown to dark purplish-brown or bluish hymenial surface and larger basidia (40-65 x 5-6 um; Guan et al. 2021). Punctularia bambusicola differs in its resupinate, tuberculate with rose tints, pink to purple hymenial surface, and smaller basidiospores (6.5-8.5 x 3.5—5 um; Guan et al. 2021). Punctularia strigosozonata differs in its resupinate to effuse-reflexed basidiomata with a brown, velutinous margin and longer basidia (40-60 x 4-5 um; Bernicchia and Gorjon 2010). Fungi are an ancient, diverse, and heterogeneous group of organisms; they can be found in a wide range of habitats, and play key roles in ecosystems as decomposers, mutualists, and pathogens (Dai et al. 2015, 2021; Cui et al. 2023; Wei 2021; Bhunjun et al. 2022). The Yunnan Province is rich in woody plant species, providing excellent substrates for wood-inhabiting fungi (Dong et al. 2023, 2024a; Wang and Cai 2023; Deng et al. 2024b; Wang et al. 2024b; Zhu et al. 2024). Our study is helpful to further understand the species diversity of wood-inhabiting fungal groups in Yunnan and explore their evolutionary rela- tionships. Additional information Conflict of interest The authors have declared that no competing interests exist. MycoKeys 114; 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 204 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Ethical statement No ethical statement was reported. Funding The research was supported by the National Natural Science Foundation of China (Proj- ect Nos. 32170004) and the High-level Talents Program of Yunnan Province (YNQR-QN- RC-2018-111). Author contributions Conceptualization, CZ, AY, and LW; methodology, CZ and LW; software, CZ, YJ, and LW; validation, CZ, SG, and HY; formal analysis, CZ, YJ, and LW; investigation, CZ and LW; resources, CZ; writing — original draft preparation, CZ, AY, LW, and JY; writing - review and editing, CZ and LW; visualization, CZ and LW; supervision, CZ; project administration, CZ; funding acquisition, CZ. All authors have read and agreed to the published version of the manuscript. Author ORCIDs Lu Wang @ https://orcid.org/0009-0004-6274-5953 Changlin Zhao © https://orcid.org/0000-0002-8668-1075 Data availability All of the data that support the findings of this study are available in the main text. References Alvarenga RLM, Gibertoni TB (2021) Crystallodon Alvarenga gen. nov., a new genus of the Auriculariales from the Neotropics. Cryptogamie. Mycologie 42(2): 17-24. https://doi.org/10.5252/cryptogamie-mycologie2021v42a2 Alvarenga RLM, Spirin V, Malysheva V, Gibertoni TB, Larsson KH (2019) Two new genera and six other novelties in Heterochaete sensu lato (Auriculariales, Basidiomycota). Botany 97(8): 439-451. https://doi.org/10.1139/cjb-2019-0046 Bernicchia A, Gorjon SP (2010) Fungi Europaei 12: Corticiaceae s.|.. Edizioni Candusso, Italia. Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, McKenzie EH, Maharac- hchikumbura SS, Buyck B, Zhao CL, Fan YG, Zhang JY, Dissanayake AJ, Marasinghe DS, Jayawardena RS, Kumla J, Padamsee M, Chen Y-Y, Liimatainen K, Ammirati JF, Phukhamsakda C, Liu J-K, Phonrob W, Randrianjohany E, Hongsanan S, Cheewang- koon R, Bundhun D, Khuna S, Yu W-J, Deng L-S, Lu Y-Z, Hyde KD, Lumyong S (2022) The numbers of fungi: Are the most speciose genera truly diverse? Fungal Diversity 114(1): 387-462. https://doi.org/10.1007/s13225-022-00501-4 Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visa- gie CM, Bai FY, Btaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonk- hom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP Bilanski P Bradley CA, Bubner B, Burgess TI, Buyck B, Cadez N, Cai L, Calaca FUS, Campbell LU, Chaverri P Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custodio FA, Dai YC, Damm U, de Azevedo SALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 205 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L (2024) What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. https://doi.org/10.3114/sim.2024.108.01 Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, tax- onomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137-392. https://doi.org/10.1007/s13225-019-00427-4 Cui BK, Pan XH, Pan F, Sun YF, Xing JH, Dai YC (2023) Species diversity and resources of Ganoderma in China. Junwu Xuebao 42(1): 170-178. Dai YC, Cui BK, Si J, He SH, Hyde KD, Yuan HS, Liu XY, Zhou LW (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycological Progress 14(8): 62. https://doi.org/10.1007/s11557-015-1084-5 Dai LD, Wu SH, Nakasone KK, Burdsall Jr HH, He SH (2017) Two new species of Aleuro- discus s.|. (Russulales, Basidiomycota) on bamboo from tropics. Mycoscience 58(3): 213-220. https://doi.org/10.1016/j.myc.2017.02.001 Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Junwu Xuebao 40(4): 770-805. https://doi.org/10.13346/j.mycosystema.210036 Deng YL, Chen M, Liu LF, Zhao R, Li Q, Miao JY, Zhao CL, Zhou HM (2024a) Molecular phylogeny and morphology reveal a new Eichleriella species (Auriculariales, Basidi- omycota) from China. Phytotaxa 675(3): 247-260. https://doi.org/10.11646/phyto- taxa.675.3.4 Deng YL, Jabeen S, Zhao CL (2024b) Species diversity and taxonomy of Vararia (Rus- sulales, Basidiomycota) with descriptions of six species from southwestern China. MycoKeys 103: 97-128. https://doi.org/10.3897/mycokeys.103.118980 DePriest PT, Sikaroodi M, Lawrey JD, Diederich P (2005) Marchandiomyces lignico- la sp. nov. shows recent and repeated transition between a lignicolous and a li- chenicolous habit. Mycological Research 109(1): 57-70. https://doi.org/10.1017/ S0953756204001601 Dong JH, Gu JY, Zhao CL (2023) Diversity of wood-decaying fungi in Wenshan Area, Yunnan Province, China. Junwu Xuebao 42(3): 638-662. https://doi.org/10.13346/j. mycosystema.220205 Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Zhao CL, Akmal M (2024a) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. Myco- sphere : Journal of Fungal Biology 15(1): 1110-1293. https://doi.org/10.5943/my- cosphere/15/1/10 Dong JH, Zhu YG, Qian CB, Zhao CL (2024b) Taxonomy and phylogeny of Auriculari- ales (Agaricomycetes, Basidiomycota) with descriptions of four new species from southwestern China. MycoKeys 108: 115-146. https://doi.org/10.3897/mycok- eys.108.128659 Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using boot- strap. Evolution; International Journal of Organic Evolution 39(4): 783-791. https:// doi.org/10.2307/2408678 Fukami T, Dickie IA, Wilkie JP Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB (2010) Assembly history dictates ecosystem functioning: Evidence from wood de- composer communities. Ecology Letters 13(6): 675-684. https://doi.org/10.1111/ j.1461-0248.2010.01465.x MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 206 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Ghobad-Nejhad M, Duhem B (2014) Novelties in the Corticiales: Vuilleminia nilsii sp. nov. and Dendrominia gen. nov. (Basidiomycota). Mycological Progress 13(1): 1-11. https://doi.org/10.1007/s11557-012-0881-3 Ghobad-Nejhad M, Ginns J (2012) Vuilleminia erastii sp. nov. (Corticiales), an am- phi-Beringian species and revision of the occurrence of Vuilleminia comedens in North America. Mycoscience 53(4): 290-299. https://doi.org/10.1007/S10267- 011-0168-6 Ghobad-Nejhad M, Nilsson RH, Hallenberg N (2010) Phylogeny and taxonomy of the genus Vuilleminia (Basidiomycota) based on molecular and morphological evidence, with new insights into Corticiales. Taxon 59(5): 1519-1534. https://doi.org/10.1002/ tax.595016 Ghobad-Nejhad M, Langer E, Nakasone K, Diederich P, Nilsson RH, Rajchenberg M, Ginns J (2021) Digging up the roots: Taxonomic and phylogenetic disentanglements in Cor- ticiaceae s.s. (Corticiales, Basidiomycota) and Evolution of Nutritional Modes. Fron- tiers in Microbiology 2320: e704802. https://doi.org/10.3389/fmicb.2021.704802 Gorjon SP Bernicchia A (2017) Dendrocorticium pinsapineum (Corticiales, Basidiomy- cota), second world distributional area in Italy. Nova Hedwigia 105(3-4): 341-346. https://doi.org/10.1127/nova_hedwigia/2017/0415 Gorjon S, Greslebin A (2024) Stereodiscus pseudotrivialis (Russulales, Basidiomycota), a new species from the Patagonian Andes of Argentina. Phytotaxa 636(2): 152-162. https://doi.org/10.11646/phytotaxa.636.2.4 Guan QX, Liu CM, Zhao TJ, Zhao CL (2020) Heteroradulum yunnanensis sp. nov. (Au- riculariales, Basidiomycota) evidenced by morphological characters and phyloge- netic analyses in China. Phytotaxa 437(2): 51-59. https://doi.org/10.11646/phyto- taxa.437.2.1 Guan QX, Zhao W, Zhao CL (2021) A new species of Punctularia (Punctulariaceae, Basidiomycota) from southwest China. Phytotaxa 489(3): 285-292. https://doi. org/10.11646/phytotaxa.489.3.5 He SH, Vlasak J, Dai YC (2014) Hispidaedalea gen. nov and Griseoporia taiwanense sp. nov (Gloeophyllales, Basidiomycota) based on morphological and molecular characters. Mycological Progress 13(3): 833-839. https://doi.org/10.1007/s11557-014-0966-2 He MQ, Zhao RL, Liu MD, Denchev TT, Begerow D, Yurkov A, Kemler M, Millanes AM, Wedin M, McTaggart AR, Shivas RG, Buyck B, Chen J, Vizzini A, Papp V, Zmitrovich IV, Davoodian N, Hyde KD (2022) Species diversity of Basidiomycota. Fungal Diversity 114(1): 1-45. https://doi.org/10.1007/s13225-021-00497-3 He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Power N, Denchev CM, Kemler M, Gorjon SP, Begerow D, Valenzuela R, Davoodian N, Niskanen T, Vizzini A, Redhead SA (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Di- versity 126(3): 1-280. https://doi.org/10.1007/s13225-024-00535-w Hood IA, McDougal RL, Somchit C, Kimberley MO, Lewis AS, Hood JO (2018) Fungi decaying the wood of fallen beech (Nothofagus) trees in the South Island of New Zealand. Canadian Journal of Forest Research 49(1): 1-17. https://doi.org/10.1139/ cjfr-2018-0179 Hu Y, Karunarathna SC, Li H, Galappaththi MC, Zhao CL, Kakumyan P, Mortimer PE (2022) The impact of drying temperature on basidiospore size. Diversity 14(4): 239. https:// doi.org/10.3390/d14040239 Hyde KD, Amuhenage TB, Apurillo CCS, Asghari R, Aumentado HD, Bahkali AH, Bera |, Bhunjun CS, Calabon MS, Chandrasiri S, Chethana KWT, Doilom M, Dong W, Fallahi M, Gajanayake AJ, Gomdola D, Gunarathne A, Hongsanan S, Huanraluek N, Jayawardena MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 207 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... RS, Kapov SA, Khyaju S, Le L, Li CJY, Li QR, Li YX, Lin CG, Linn MM, Liu JK, Liu NG, Luangharn T, Madagammana AD, Manawasinghe IS, Marasinghe DS, McKenzie EHC, Meakala N, Meng QF, Mukhopadhyay S, Norphanphoun C, Pem D, Phukhamsakda C, Sarma VV, Selcuk F, Senanayake IC, Shah S, Shu YX, Silva HVS, Su HL, Tavakol M, Thakshila SAD, Thiyagaraja V, Thongklang N, Tian Q, Tibpromma §S, Tun ZL, Ulukapi M, Wang Y, Wannasawang N, Wijayawardene NN, Wimalasena SDMK, Xiao Y, Xiong YR, Yasanthika WAE, Li Q, Dai DQ (2023) Fungalpedia, an illustrated compendium for the fungi and fungus-like taxa. Mycosphere: Journal of Fungal Biology 14(1): 1835- 1959. https://doi.org/10.5943/mycosphere/14/1/22 Hyde KD, Baldrian P Chen Y, Chethana KWT, De Hoog S, Doilom M, Gomes de Farias AR, Gongalves MFM, Gonkhom D, Gui H, Hilario S, Hu Y, Jayawardena RS, Khyaju S, Kirk PM, Kohout P, Luangharn T, Maharachchikumbura SSN, Manawasinghe IS, Mor- timer PE, Niego AGT, Phonemany M, Sandargo B, Senanayake IC, Stadler M, Surup F, Thongklang N, Wanasinghe DN, Bahkali AH, Walker A (2024a) Current trends, lim- itations and future research in the fungi? Fungal Diversity 125(1): 1-71. https://doi. org/10.1007/s13225-023-00532-5 Hyde KD, Saleh A, Aumentado HDR, Boekhout T, Bera I, Khyaju S, Bhunjun CS, Chethana KWT, Phukhamsakda C, Doilom M, Thiyagaraja V, Mortimer PE, Maharachchikumbura SSN, Hongsanan S, Jayawardena RS, Dong W, Jeewon R, Al-Otibi F, Wijesinghe SN, Wanasinghe DN (2024b) Fungal numbers: Global needs for a realistic assessment. Fungal Diversity 128(1): 1-36. https://doi.org/10.1007/s13225-023-00532-5 Ji XH, Sun B, He G, Sun QB (2024) Scytinostroma bambusinum sp. nov. (Russulales, Basid- iomycota) in China evidenced by morphological characteristics and phylogenetic anal- yses. Biodiversity Data Journal 12: e€115975. https://doi.org/10.3897/BDJ.12.e115975 Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. https://doi.org/10.1093/bib/bbx108 Knijn A, Ferretti A (2018) Punctularia atropurpurascens in the Villa Ada urban Park in Rome, Italy. Mycology 47: 29-39. https://doi.org/10.6092/issn.2531-7342/8349 Kneal RJ, Smith ME (2015) Artomyces nothofagisp. nov.,aclavarioid fungus froma Chilean Nothofagus forest. Mycotaxon 130(3): 653-660. https://doi.org/10.5248/130.653 Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics (Oxford, England) 30(22): 3276-3278. https://doi. org/10.1093/bioinformatics/btu531 Larsson E, Larsson KH (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95(6): 1037-1065. https://doi.or g/10.1080/15572536.2004.11833020 Li QZ, Liu SL, Wang XW, May TW, Zhou LW (2022) Redelimitation of Heteroradulum (Auriculariales, Basidiomycota) with H. australiense sp. nov. MycoKeys 86: 87-101. https://doi.org/10.3897/mycokeys.86.76425 Li Y, Nie T, Nakasone KK, Li HJ, He SH (2023) Taxonomy and phylogeny of corticioid fun- gi in Auriculariaceae (Auriculariales, Basidiomycota): A new genus, five new species and four new combinations. Journal of Fungi (Basel, Switzerland) 9(3): 318. https:// doi.org/10.3390/jof9030318 Liu XF, Shen S, Zhao CL (2019) Morphological and molecular identification of a new species of Ejichleriella (Auriculariales, Basidiomycota) in China. Phytotaxa 404(6): 245-254. https://doi.org/10.11646/phytotaxa.404.6.3 MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 208 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Liu SL, Shen ZQ, Li QZ, Liu XY, Zhou LW (2022) Alloexidiopsis gen. nov., a revision of generic delimitation in Auriculariales (Basidiomycota). Frontiers in Microbiology 13: 894641. https://doi.org/10.3389/fmicb.2022.894641 Lticking R, Moncada B (2017) Dismantling Marchandiomphalina into Agonimia (Verruca- riaceae) and Lawreymyces gen. nov. (Corticiaceae): Setting a precedent to the formal recognition of thousands of voucherless fungi based on type sequences. Fungal Di- versity 84(1): 119-138. https://doi.org/10.1007/s13225-017-0382-4 Licking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Nilsson HR, Opik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL (2021) Fungal taxono- my and sequence-based nomenclature. Nature Microbiology 6(5): 1-9. https://doi. org/10.1038/s41564-021-00888-x Maekawa N, Sugawara R, Kogi H, Norikura S, Sotomea K, Endoa N, Nakagiria A, Ushijima S (2023) Hypochnicium sensu lato (Polyporales, Basidiomycota) from Japan, with de- scriptions of a new genus and three new species. Mycoscience 64(1): 19-34. https:// doi.org/10.47371/mycosci.2022.10.001 Malysheva V, Spirin V (2017) Taxonomy and phylogeny of the Auriculariales (Agaricomy- cetes, Basidiomycota) with stereoid basidiocarps. Fungal Biology 121(8): 689-715. https://doi.org/10.1016/j.funbio.2017.05.001 Malysheva V, Spirin V, Miettinen O, Motato-Vasquez V, Hernawati JSSS, Larsson KH (2018) Revision of Protohydnum (Auriculariales, Basidiomycota). Mycological Prog- ress 17(7): 805-814. https://doi.org/10.1007/s11557-018-1393-6 Miettinen O, Spirin V, Niemela T (2012) Notes on the genus Aporpium (Auriculariales, Ba- sidiomycota), with a new species from temperate Europe. Annales Botanici Fennici 49(5-6): 359-368. https://doi.org/10.5735/085.049.0607 Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the Extreme to the Campus and Beyond. Chicago, IL, 39 pp. https://doi. org/10.1145/2335755.2335836 Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.ampignons de I’Equateur (Pugillus IV). Bulletin de I'Herbier Boissier 3: 53-74. Petersen JH (1996) Farvekort. The Danish Mycological Society’s Colour-Chart. Forenin- gen til Svampekundskabens Fremme, Greve, Germany, 6 pp. Qin GF, Qin WM, Wang HC, Zhao J, Korhonen K, Chen J, Dai YC, Yuan Y (2024) Phylogeny and species diversity of Armillaria in China based on morphological, mating test, and GCPSR criteria. Mycology 1-35. https://doi.org/10.1080/21501203.2024.2404121 Ronquist F, Teslenko M, van der Mark P Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/sysbio/sys029 Shen LL, Wang KY, Xia H, Lang SL, Yao L, Yang X (2024) Molecular phylogeny and mor- phology reveal a new wood-inhabiting fungal species of Conferticium (Stereace- ae, Basidiomycota) from southwest China. Phytotaxa 677(1): 77-86. https://doi. org/10.11646/phytotaxa.677.1.4 Sotome K, Maekawa N, Nakagiri A, Lee SS, Hattori T (2014) Taxonomic study of Asian species of poroid Auriculariales. Mycological Progress 13(4): 987-997. https://doi. org/10.1007/s11557-014-0984-0 MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 209 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Spirin V, Malysheva V, Larsson KH (2018) On some forgotten of Exidia and Myxarium (Auriculariales, Basidiomycota). Nordic Journal of Botany 36(3): e€01601. https://doi. org/10.1111/njb.01601 Spirin V, Volobuev S, Malysheva V, Miettinen O, Kotiranta H, Larsson KH (2021) Identity of the subalpine-subarctic corticioid fungus Megalocystidium leucoxanthum (Rus- sulales, Basidiomycota) and six related species. Plant Ecology and Evolution 154(2): 231-244. https://doi.org/10.5091/plecevo.2021.1857 Stroheker S, Weiss M, Sieber TN, Bugmann H (2018) Ecological factors influencing Nor- way Spruce regeneration on nurse logs in a subalpine virgin forest. Forests 9(3): 120. https://doi.org/10.3390/f9030120 Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and Other Meth- ods), Version 4.0b10. Sinauer Associates: Sunderland, MA, USA. Tian Y, Ghobad-Nejhad M, He SH, Dai YC (2018) Three new species of Aleurodiscus s.. (Russulales, Basidiomycota) from southern China. MycoKeys 37: 93-107. https:// doi.org/10.3897/mycokeys.37.25901 Tohtirjap A, Hou SX, Rivoire B, Gates G, Wu F, Dai YC (2023) Two new species of Exidia sen- su lato (Auriculariales, Basidiomycota) based on morphology and DNA sequences. Frontiers in Microbiology 13: 1080290. https://doi.org/10.3389/fmicb.2022.1080290 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinali G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJM (2019) Large-scale generation and analysis of filamentous fungal DNA bar- codes boosts coverage for kingdom fungi and reveals thresholds for fungal spe- cies and higher taxon delimitation. Studies in Mycology 92(1): 135-154. https://doi. org/10.1016/j.simyco.2018.05.001 Wang K, Cai L (2023) Overview of the historical and current status of fungal taxonomy and diversity in China. Junwu Xuebao 42(1): 50-62. https://doi.org/10.13346/j.my- cosystema.220497 Wang YR, Wu YD, Vlasak J, Yuan Y, Dai YC (2021) Phylogenetic analysis demonstrat- ing four new species in Megasporoporia sensu lato (Polyporales, Basidiomycota). Mycosphere: Journal of Fungal Biology 12(1): 1012-1037. https://doi.org/10.5943/ mycosphere/12/1/11 Wang CG, Zhao H, Liu HG, Zeng GY, Yuan Y, Dai YC (2023) A multi-gene phylogeny clari- fies species diversity, taxonomy, and divergence times of Ceriporia and other related genera in Irpicaceae (Polyporales, Basidiomycota). Mycosphere: Journal of Fungal Biology 14(1): 1665-1729. https://doi.org/10.5943/mycosphere/14/1/19 Wang CG, Dai YC, Kout J, Gates GM, Liu HG, Yuan Y, Vlasak J (2024a) Multi-gene phylogeny and taxonomy of Physisporinus (Polyporales, Basidiomycota). Mycosphere: Journal of Fungal Biology 15(1): 1455-1521. https://doi.org/10.5943/mycosphere/15/1/12 Wang L, Yang X, Zhao CL (2024b) The wood-decaying fungal diversity unveiled by mor- phology and phylogeny in Ailaoshan Mountain, Yunnan, China. Phytotaxa 661(1): 001-030. https://doi.org/10.11646/phytotaxa.661.1.1 Wei YL (2021) Forming mechanisms and ecological function of wood-decaying fungal community in forest ecosystem. Shengtaixue Zazhi 40(2): 534-543. https://doi.org/ 10.13292/j.1000-4890.202102.001 MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 210 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Wei CL, Chen CC, He SH, Wu SH (2022) Dendrocorticiopsis orientalis gen. et sp. nov. of the Punctulariaceae (Corticiales, Basidiomycota) revealed by molecular data. My- coKeys 90: 19-30. https://doi.org/10.3897/mycokeys.90.84562 Weif§ M, Oberwinkler F (2001) Phylogenetic relationships in Auriculariales and related groups — Hypotheses derived from nuclear ribosomal DNA sequences. Mycological Research 105(4): 403-415. https://doi.org/10.1017/S095375620100363X White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A guide to methods and applications. Academic Press, San Diego, 315-322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 Wijayawardene NN, Hyde KD, Dai DQ, Sanchez-Garcia M, Goto BT, Saxena RK, Erdogdu M, Selcuk F, Rajeshkumar KC, Aptroot A, Btaszkowski J, Boonyuen N, da Silva GA, de Souza FA, Dong W, Ertz D, Haelewaters D, Jones EBG, Karunarathna SC, Kirk PM, Kukwa M, Kumla J, Leontyev DV, Lumbsch HT, Maharachchikumbura SSN, Marguno F, Martinez-Rodriguez P Mesi¢ A, Monteiro JS, Oehl F, Pawtowska J, Pem D, Pfiegler WP Phillips AJL, Posta A, He MQ, Li JX, Raza M, Sruthi OP Suetrong S, Suwannarach N, Tedersoo L, Thiyagaraja V, Tibpromma S, Tkalcec Z, Tokarev YS, Wanasinghe DN, Wijesundara DSA, Wimalaseana SDMK, Madrid H, Zhang GQ, Gao Y (2022) Outline of Fungi and fungus-like taxa - 2021. Mycosphere: Journal of Fungal Biology 13(1): 53-453. https://doi.org/10.5943/mycosphere/13/1/2 Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, Santiago ALCMA, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assungao AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Blaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, Silva SBG, Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan XL, Felix JRB, Galappaththi MCA, Groenewald M, Han L-S, Huang B, Hurdeal VG, Ignatieva AN, Jer6nimo GH, Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li QR, Lima JLR, Liu XY, Lu WH, Lumbsch HT, Madrid H, Magurno F, Mar- son G, McKenzie EHC, Menkis A, Mesi¢é A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawtowska J, Peintner U, Pozdnyakov LR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkuma KC, Raza M, Roy N, Sa- marakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selcuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP Suwannarach N, Tanaka K, Tibpromma S, Tomas EO, Ulukapr M, Vooren NV, Wanasinghe DN, Weber E, Wu QZ, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao RL, Zverkov OA, Thines M, Karpov SA (2024) Classes and phyla of the kingdom Fungi. Fungal Diversity 127(1): 1-165. https://doi.org/10.1007/s13225-024-00540-z Wu SH (1996) Studies on Gloeocystidiellum sensu lato (Basidiomycotina) in Taiwan. Mycotaxon 58: 1-68. Wu SH, Hibbett DS, Binder M (2001) Phylogenetic analyses of Aleurodiscus s.|. and allied genera. Mycologia 93(4): 720-731. https://doi.org/10.1080/00275514.2001.12063203 Wu F, Yuan Y, Chen JJ, Cui BK, Zhou M, Dai YC (2020) Terrestriporiaceae fam. nov., a new family of Russulales (Basidiomycota). Mycosphere: Journal of Fungal Biology 11(1): 2755-2766. https://doi.org/10.5943/mycosphere/11/1/21 Wu F, Zhou LW, Vlasak J, Dai YC (2022) Global diversity and systematics of Hymeno- chaetaceae with poroid hymenophore. Fungal Diversity 113(1): 1-192. https://doi. org/10.1007/s13225-021-00496-4 MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 211 Ali Yang et al.: Morphological characteristics and phylogenetic analyses revealed five new species... Ye SY, Zhang YB, Wu F, Liu HX (2020) Multi-locus phylogeny reveals two new species of Exidia (Auriculariales, Basidiomycota) from China. Mycological Progress 19(9): 859-868. https://doi.org/10.1007/s11557-020-01601-8 Yuan HS, Lu X, Decock C (2018) Molecular and morphological evidence reveal a new ge- nus and species in Auriculariales from tropical China. MycoKeys 35: 27-39. https:// doi.org/10.3897/mycokeys.35.25271 Yuan Y, Chen JJ, Korhonen K, Martin F, Dai YC (2021) An updated global species di- versity and phylogeny in the forest pathogenic genus Heterobasidion (Basidiomy- cota, Russulales). Frontiers in Microbiology 11: 596393. https://doi.org/10.3389/ fmicb.2020.596393 Yuan Y, Bian LS, Wu YD, Chen JJ, Wu F, Liu HG, Zeng GY, Dai YC (2023) Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycol- ogy 14(1): 204-226. https://doi.org/10.1080/21501203.2023.2238779 Zhang QY, Liu HG, Bian LS, Chen Q (2023) Two new species of Scytinostroma (Russu- lales, Basidiomycota) in Southwest China. Frontiers in Cellular and Infection Microbi- ology 13: 1189600. https://doi.org/10.3389/fcimb.2023.1189600 Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomyco- ta) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16(1): 93-100. https://doi.org/10.1007/s11557-016-1259-8 Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023) Multi-gene phylogeny and taxono- my of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomycota). Journal of Fungi (Basel, Switzerland) 9(3): 320. https://doi.org/10.3390/jof9030320 Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore funga and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystems 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200 Zhou LW, Dai YC (2013) Taxonomy and phylogeny of wood-inhabiting hydnoid species in Russulales two new genera, three new species and two new combinations. Mycolo- gia 105(3): 636-649. https://doi.org/10.3852/12-011 Zhou M, Chen JJ, Vlasak J, Yuan Y (2021) Dentipellicula guyanensis sp. nov. (Hericia- ceae, Basidiomycota) from French Guiana. Phytotaxa 478(2): 261-267. https://doi. org/10.11646/phytotaxa.478.2.7 Zhou M, Dai YC, Vlasak J, Liu HG, Yuan Y (2023) Updated systematics of Trichaptum s.I. (Hymenochaetales, Basidiomycota). Mycosphere: Journal of Fungal Biology 14(1): 815-917. https://doi.org/10.5943/mycosphere/14/1/11 Zhou HM, Dai YC, Bian LS, Liu HG, Vlasak J, Yuan Y (2024) Diversity, divergence time, and biogeography of the genus Albatrellus (Agaricomycetes, Russulales). Mycology 1-39. https://doi.org/10.1080/21501203.2024.2386021 Zhu AH, Zhang QY, Luo KY, He SH, Ma HX (2024) Diversity of wood-inhabiting macrofun- gi in tropical areas of Yunnan Province, China. Junwu Xuebao 43(3): 230265. https:// doi.org/10.13346/j.mycosystema.230265 MycoKeys 114: 177-212 (2025), DOI: 10.3897/mycokeys.114.145368 212