683 MycoKeys MycoKeys 117: 29-66 (2025) DOI: 10.3897/mycokeys.117.146236 Research Article Morphological and molecular analyses revealed four new wood- inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan Yinglian Deng'2®, Meng Chen, Linfeng Liu2®, Qizhen Li?, Sicheng Zhang2®, Haisheng Yuan*®, Changlin Zhao'?® 1 Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, the Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China 2 College of Forestry, Southwest Forestry University, Kunming 650224, China 3 Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China Corresponding authors: Changlin Zhao (fungi@swfu.edu.cn); Haisheng Yuan (hsyuan@iae.ac.cn) OPEN Qaccess This article is part of: Exploring the Hidden Fungal Diversity: Biodiversity, Taxonomy, and Phylogeny of Saprobic Fungi Edited by Samantha C. Karunarathna, Danushka Sandaruwan Tennakoon, Ajay Kumar Gautam Academic editor: Danushka Sandaruwan Tennakoon Received: 8 January 2025 Accepted: 7 April 2025 Published: 30 April 2025 Citation: Deng Y, Chen M, Liu L, Li Q, Zhang S, Yuan H, Zhao C (2025) Morphological and molecular analyses revealed four new wood-inhabiting fungal species (Hymenochaetales, Basidiomycota) from Yunnan. Mycokeys 117: 29-66. https://doi. org/10.3897/mycokeys.117.146236 Copyright: © Yinglian Deng et al. This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0). Abstract Hymenochaetales is one of the fungal orders mainly composed of wood-inhabiting mac- rofungi within the class Agaricomycetes, Basidiomycota. Four new Hymenochaetales wood-inhabiting fungi, Hymenochaete bannaensis, Lyomyces asiaticus, Peniophorella albo- hymenia, and P._ punctata collected from China are proposed based on morphological char- acteristics and molecular evidence. H. bannaensis is distinguished by flocculent basidioma- ta with cinnamon to yellowish brown to rust-brown hymenial surface, generative hyphae with simple septa and broadly ellipsoid to globose basidiospores. L. asiaticus is characterized by the membranaceous basidiomata with white to cream hymenial surface with tuberculate, a monomitic hyphal system with clamped generative hyphae and ellipsoid basidiospores. In addition, P albohymenia is delimited by membranaceous basidiomata with white hyme- nial surface, four types of cystidia as stephanocyst, fusiform, cylindrical and capitate, and ellipsoid basidiospores. P punctata is unique in the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cystidia, and allantoid basidiospores. Sequences of ITS and nLSU rRNA markers based on phylogenetic analyses were performed using the Maximum Likelihood, Maximum Parsimony and Bayesian Inference methods. Key words: Biodiversity, new taxa, phylogenetic analyses, Southwestern China, taxonomy Introduction In terms of taxonomic status, wood inhabiting fungi mainly refer to the classifi- cation within the class Agaricomycetes, Basidiomycota (James et al. 2020; Dai et al. 2021; Wijayawardene et al. 2022; Yuan et al. 2023; Zhao et al. 2024; Dai et al. 2025). Most of basidiomycetes are white-rot fungi, which are responsible for degradation of the lignin in the forest ecosystems (Floudas et al. 2012; Osman and El-Nuby 2023). Rot type can be inferred from direct examination of wood substrates or from cultural tests, in which it was classified to three groups, brown rot, soft rot, and white rot fungi, and all species of Hymenochaetales cause white rot (Justo et al. 2017; Wang et al. 2023a). 29 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Hymenochaetales is one of the fungal orders being mainly composed of wood-inhabiting fungi within Agaricomycetes, Basidiomycota (Wang et al. 2023b; Zhou et al. 2023; Dai et al. 2025). This order includes fascinating ba- sidiomycete fungi that occupies a distinct ecological niche, in which there are many variations of the basidiomata types within Hymenochaetales (Larsson et al. 2006; Wu et al. 2019a; Guan et al. 2023). Hymenochaetales comprises a number of representative wood-inhabiting fungal taxa, which includes diverse hymenophoral morphologies as hydnoid, corticioid, and polyporoid (Zhao et al. 2023a; Yuan et al. 2024). Currently, 14 families, 83 genera, and 1205 species, are accepted in Hymenochaetales, and include wood-inhabiting and ectomycorrhizal fungi (Hibbett et al. 2014; Wang et al. 2023a; He et al. 2024). However, the species diversity has been well ex- plored worldwide, therefore more new taxa need to be discovered. Further- more, the order has various morphological characters for basidiomata, in which all characteristics are also found in the other orders (Polyporales, Russulales) in Agaricomycetes (Wu and Yuan 2020). On the basis of the frequent inclusion of data from DNA sequences in many phylogenetic studies, the classification of the wood-inhabiting fungi has been updated continuously (Yurchenko et al. 2020a; Mao et al. 2023; Zhang et al. 2023b). Wang et al. (2023a) implemented a multi-locus phylo- genetic analysis on the basis of nSSU, ITS, nLSU, mt-SSU, tef7a, rpb1, and rpb2 genes and updated the taxonomic framework of Hymenochaetales. The results have shown that 45 genera were accepted in Hymenochaetaceae, including the genus Hymenochaete (Wang et al. 2023a), and Hymenochae- taceae comprised three major genera Phellinus sensu lato, Hymenochaete and Inonotus sensu lato (Larsen and Cobb-Poulle 1990; Léger 1998; Ryvar- den 2005; Wu et al. 2022a). The results showed that the genus Hymeno- chaete (Hymenochaetaceae) was closely grouped with Hymenochaetopsis S.H. He & Jiao Yang, and they were almost indistinguishable in morphology (Larsson et al. 2006; He and Dai 2012; Baltazar et al. 2014; Parmasto et al. 2014; Yang et al. 2016). According to the anatomical features, the genus has been divided into four sections, Hymenochaete, Fultochaete Escobar ex Léger, Gymnochaete Escobar ex Léger and Paragymnochaete Léger (Léger 1998; He and Dai 2012). Molecular studies of Hyphoderma Wallr. revealed that the reinstatement of Peniophorella resulted in 19 new combinations in the genus Peniophorella and all species nested in the hymenochaetoid clade (Larsson 2007b). Miettinen et al. (2019) revealed that P praetermissa (P. Karst.) K.H. Larss. and P. tsugae (Burt) K.H. Larss. grouped together and clustered in Hymenochaetales. Telleria et al. (2012) studied Hyphoderma and its discrimination from closely related taxa and indicated that eight Peniophorella taxa were closely grouped and dis- tinct from Hyphoderma s.s. Justo et al. (2017) revised the family-level classifi- cation of the order Polyporales (Basidiomycota) and proposed that 20 species were classified in Peniophorella located in the family Hyphodermataceae (Hy- menochaetales). Morphological studies and phylogenetic analyses reported six new taxa of Peniophorella and displayed the taxonomic status for the new taxa within the genus (Guan et al. 2020; Xu et al. 2020; Yurchenko et al. 2020a). Wang et al. (2023a) proposed that the genus Peniophorella bears affinity to a new family Peniophorellaceae. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 30 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Due to the lack of sequences of some wood-inhabiting fungal taxa, it is dif- ficult to clearly distinguish many genera in Schizoporaceae, therefore, a broad concept of Hyphodontia s.|. was accepted (Yurchenko and Wu 2014; Riebesehl et al. 2015; Riebesehl and Langer 2017). Based on the nuclear DNA sequence data, six well-distinguished clades as the Hastodontia clade, the Hyphodontia clade, the Lagarobasidium clade, the Kneiffiella-Alutaceodontia clade, the Xy- lodon-Lyomyces-Rogersella clade and the Xylodon-Schizopora-Palifer clade, were included (Yurchenko and Wu 2014). Inferred from the phylogenetical studies for Hyphodontia s.|., the genus Lyomyces was nested within the Xy- lodon-Lyomyces-Rogersella clade (Yurchenko and Wu 2014). Riebesehl et al. (2019) clarified the generic concept and their phylogenetic reconstruction of Lyomyces and the species L. sambuci (Pers.) P. Karst. was sister to L. crustosus (Pers.) P. Karst (Riebesehl et al. 2019). In this study, four taxa from three genera of Hymenochaetales were collect- ed from Yunnan, China and the phylogenetic relationships are studied based on ITS-nLSU gene regions. Therefore, exploring the diversity and taxonomic status of these new taxa using different characters will be significant for wood-inhab- iting fungi in Yunnan. Morphology and phylogenetic analyses reveal that these are new to science. Materials and methods Sample collection and morphology examination Fresh basidiomata of the fungi were collected from Xishuangbanna and Zha- otong of Yunnan Province, China, from September 2023 to January 2024. Spec- imens were dried in an electric food dehydrator at 40 °C, then sealed and stored in an envelope bag and deposited in the herbarium of the Southwest Forestry University (SWFC), Kunming, Yunnan Province, China. Macromorphological de- scriptions are based on field notes and photos captured in the field and lab. Color terminology was followed as mentioned by Petersen (1996). Micromor- phological data were obtained from the dried specimens when observed un- der a light microscope (Nikon Ni, Tokyo, Japan) following the previous study (Cui et al. 2019; Zhao et al. 2023b; Dong et al. 2024). The following abbrevi- ations are used: KOH = 5% potassium hydroxide water solution, CB = Cotton Blue, CB- = acyanophilous, IKI = Melzer's Reagent, IKI- = both inamyloid and indextrinoid, L = mean spore length (arithmetic average for measured spores), W = mean spore width (arithmetic average for measured spores), Q = varia- tion in the L/W ratios between the specimens studied and n = a/b (number of spores (a) measured from given number (b) of specimens). Standardized sam- pling of microstructures for measurement includes basidiospores (30), basidia, basidioles and cystidia (5), setae and hyphae diameter (10) (Cui et al. 2019; Zhao et al. 2023b; Dong et al. 2024). Molecular phylogeny The EZNA HP Fungal DNA Kit (Omega Biotechnologies Co., Ltd., Kunming, Chi- na) was used to extract DNA with some modifications from the dried speci- mens. The nuclear ribosomal ITS region was amplified with primers ITS5 and MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 31 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species ITS4 (White et al. 1990). The PCR procedure for ITS was as follows: initial de- naturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The nuclear nLSU region was amplified with primer pair LROR and LR7 (Vilgalys and Hester 1990; Rehner and Samuels 1994). The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR procedure for ITS and nLSU followed previous study (Zhao and Wu 2017). All of the newly generated sequences were deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (Table 1). The sequences were aligned in MAFFT version 7 (Katoh et al. 2019) us- ing the G-INS-i strategy. The alignment was adjusted manually using AliV- iew version 1.27 (Larsson 2014). The combined dataset was deposited in TreeBASE (https://treebase.org/treebase-web/home.html; submission ID 32063). Sequences of Boletopsis leucomelaena (Pers.) Fayod and Thele- phora ganbajun M. Zang, retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 1; Dong et al. 2024). Sequences of Fomiti- poria bannaensis Y.C. Dai and F. punctata (P. Karst.) Murrill, retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 2; Nie et al. 2017). Sequences of Fasciodontia brasiliensis Yurchenko & Riebesehl and F. bugellensis (Ces.) Yurchenko, Riebesehl & Langer retrieved from Gen- Bank were used as the outgroup in the ITS+nLSU analysis (Fig. 3; Yuan et al. 2024). Sequences of Basidioradulum mayi Xue W. Wang & L.W. Zhou and B. radula (Fr.) Nobles retrieved from GenBank were used as the outgroup in the ITS+nLSU analysis (Fig. 4; Wang et al. 2023a; Dong et al. 2024). Maximum Parsimony (MP), Maximum Likelihood (ML), and Bayesian Infer- ence (BI) analyses were applied to the combined three datasets following a previous study (Dong et al. 2024). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence addi- tions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed us- ing bootstrap (BT) analysis with 1,000 pseudo replicates (Felsenstein 1985). Descriptive tree statistics of tree length (TL), composite consistency index (Cl), composite retention index (RI), composite rescaled consistency index (RC), and composite homoplasy index (HI) were calculated for each maxi- mum parsimonious tree generated. The combined dataset was also analysed using Maximum Likelihood (ML) in RAxML-HPC2 through the CIPRES Science Gateway (Miller et al. 2012). Branch support (BS) for the ML analysis was determined by 1000 bootstrap pseudo replicates. MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolu- tion model for each dataset for the purposes of Bayesian inference (BI) which was performed using MrBayes 3.2.7a with a GTR+I+G model of DNA substi- tution and a gamma distribution rate variation across sites (Ronquist et al. 2012). A total of four Markov chains were run for two runs from random start- ing trees for 1 million generations for ITS+nLSU (Fig. 1); 0.8 million generations for ITS+nLSU (Figs 2, 3); and 4.4 million generations for ITS+nLSU (Fig. 4) with trees and parameters sampled every 1,000 generations. The first quarter of all of the generations were discarded as burn-ins. A majority rule consensus tree MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 32 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Table 1. List of species, specimens and GenBank accession numbers of sequences used in this study. [* Indicates type materials]. Species name Basidioradulum mayi B. radula Boletopsis leucomelaena Fasciodontia brasiliensis F. bugellensis F. bannaensis F. gabonensis F. punctate F. rhamnoides Hydnoporia pinicola H. pinicola H. yunnanensis H. yunnanensis Hymenochaete acerosa H. adusta H. angustispora H. angustispora H. anomala H. asetosa H. attenuate H. bambusicola H. berteroi H. biformisetosa H. boddingii H. boddingii H. borbonica H. cana H. cinnamomea H. colliculosa H. colliculosa H. conchata H. contiformis H. cruenta H. cyclolamellata H. damicornis H. damicornis H. denticulata H. dracaenicola H. dracaenicola H. duportii H. epichlora H. floridea H. fuliginosa H. fulva H. globispora H. huangshanensis H. innexa H. japonica H. legeri H. longispora H. luteobadia wen rors rare ee er et 55008 Sample no. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 References Wang et al. (2023a) Wang et al. (2023a) Liu et al. (2022) Yurchenko et al. (2020a) Yurchenko et al. (2020a) Nie et al. (2017) Wang et al. (2023a) Nie et al. (2017) Wang et al. (2023a) Dong et al. (2024) Dong et al. (2024) Dong et al. (2024) Dong et al. (2024) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) Yang and He (2014) Du et al. (2021) Du et al. (2021) Du et al. (2021) He et al. (2017 He et al. (2017 He et al. (2017 He et al. (2017 Du et al. (2021) He et al. (2017) He et al. (2017) He et al. (2017) Du et al. (2021) Du et al. (2021) He et al. (2017) Du et al. (2021) Du et al. (2021) He et al. (2017) He and Dai (2012) He and Dai (2012) Du et al. (2021) He and Dai (2012) Du et al. (2021) He and Dai (2012) He and Dai (2012) He and Dai (2012) He et al. (2017) He and Dai (2012) He and Dai (2012) ) ) ) ) 33 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Species name H. macrochloae H. megaspora H. minor H. minuscula H. murina H. muroiana H. nanospora H. ochromarginata H. orientalis H. parmastoi H. paucisetigera H. quercicola H. rhabarbarina H. rheicolor H. rhododendricola H. rubiginosa H. rubiginosa H. rufomarginata H. separabilis H. setipora H. sharmae H. sharmae H. sinensis H. spathulata H. sphaericola H. sphaericola H. sphaerospora H. subferruginea H. subferruginea H. tabacina H. tasmanica H. tenuis H. tongbiguanensis H. tropica H. ulmicola H. unicolor H. verruculosa H. villosa H. xerantica H. xerantica H. bannaensis H. bannaensis H. yunnanensis Hyphodontia arguta H. arguta H. borbonica H. pachyspora H. pachyspora H. pallidula H. pallidula H. wongiae H. wongiae Sample no. eer sr e0088 ee —tweaozorors2 | onosass5 2 vets kusrsman Lyomyces albopulverulentus CLZhao 21478 OP730712 OP730724 L. allantosporus L. allantosporus FR-0249548 KY800397 KY795963 KAS-GEL4933 KY800401 KY795965 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 References Du et al. (2021) He and Dai (2012) He and Dai (2012) He and Dai (2012) He et al. (2017) Du et al. (2021) He and Dai (2012) He and Dai (2012) He et al. (2017) He et al. (2017) He and Dai (2012) He et al. (2017) He and Dai 2012 Du et al. (2021) He and Dai (2012) Yang et al. (2016) Wang et al. (2023a) He et al. (2017) He and Dai (2012) Du et al. (2021) Du et al. (2021) Du et al. (2021) Li et al. (2024) He et al. (2017) Li et al. (2024) Li et al. (2024) He et al. (2017) Du et al. (2021) Du et al. (2021) He and Dai (2012) He et al. (2017) Du et al. (2021) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) He et al. (2017) Du et al. (2021) Wang et al. (2023a) Present study Present study He et al. (2017) Larsson (2007a) Wang et al. (2023a) Riebesehl et al. (2015) Wang et al. (2023a) Wang et al. (2021) Unpublished Unpublished Wang et al. (2023a) Wang et al. (2023a) Guan et al. (2023) Yurchenko et al. (2017) Yurchenko et al. (2017) 34 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Sample no. Species name cremeus CLZhao 4138 MN945974 MW264922 cremeus CLZhao 8295 MN945972 fe _ crustosus TASM:YG G39 MF382993 PF _crustosus UC2022841 KP814310 fF . densiusculus Ryvarden 44818 OK273853 OK273853 . elaeidicola LWZ20180411-19 MT319457 MT319190 . elaeidicola LWZ2018041 1-20 MT319458 NG_153910 erastii 23cSAMHYP JX857800 | = erastii TASM:YG 022 MF382992 \ eri ee fumosus | CLZhao 8188 MW713744 MW713736 . gatesiae LWZ20180515-3 MT319447 MT319181 . gatesiae LWZ20180515-32 MT319448 MT319182 . griseliniae KHL 12971 (GB) DQ873651 DQ873651 . hengduanensis CLZhao 20627 OR793233 PP657611 . hengduanensis CLZhao 25551 OR658999 PP657610 incanus CLZhao 22813 0R094480 OR449935 incanus CLZhao 22900 * 0R094481 0R449936 _ juniper FR-0261086 KYO81799 | . Macrosporus CLZhao 4516 MN945977 MW264920 . Mascarensis KAS-GEL4833 KY800399 KY795964 _mascarensis KAS-GEL4908 KY800400 fF . Microfasciculatus . ochraceoalbus CLZhao 4385 MZ262535 MZ262521 . ochraceoalbus CLZhao 4725 MZ262536 MZ262522 . orientalis GEL3376 DQ340325 DQ340351 cizmaosa7s | orrono . wuliangshanensis . wuliangshanensis . wumengshanensis . wumengshanensis . yunnanensis . yunnanensis mirlrlr irl ele leper leper yee lyre pele perp pele ler pepe peepee pe pee reper pepe pepe yee pele le lee le lee P aspersa TNM F24809 MN062097 MN062142 P aspersa TNM F32708 MN062099 MN062144 P cremea CLZhao 1606 MT955162 —_ aS MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 References Present study Present study Chen and Zhao (2020) Chen and Zhao (2020) Chen and Zhao (2020) Chen and Zhao (2020) Gafforov et al. (2017) Guan et al. (2023) Viner et al. (2022) Wang et al. (2021) Wang et al. (2021) Unpublished Gafforov et al. (2017) Yurchenko et al. (2020a) Yurchenko et al. (2020a) Luo et al. (2021b) Luo et al. (2021b) Luo et al. (2021b) Wang et al. (2021) Wang et al. (2021) Larsson et al. (2006) Yuan et al. (2024) Yuan et al. (2024) Dong et al. (2024) Dong et al. (2024) Riebesehl and Langer (2017) Chen and Zhao (2020) Yurchenko et al. (2020a) Yurchenko et al. (2020a) Chen and Zhao (2020) Yuan et al. (2024) Luo et al. (2021b) Luo et al. (2021b) Luo et al. (2021b) Luo et al. (2021b) Yurchenko et al. (2017) Larsson et al. (2006) Larsson et al. (2006) Yurchenko et al. (2017) Yurchenko et al. (2017) Yurchenko et al. (2017) Chen and Zhao (2020) Chen and Zhao (2020) Yuan et al. (2024) Yuan et al. (2024 Guan et al. (2023 Guan et al. (2023 Yuan et al. (2024 Wang et al. (2023a) Wang et al. (2023a) Present study wR I MH ir swe Present study Yurchenko et al. (2020b) Yurchenko et al. (2020b) Xu et al. (2020) 35 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species GenBank accessions no. Species name Sample no. References ITS nLSU P. cremea CLZhao 1719 MT955163 = Xu et al. (2020) P crystallifera LWZ 20210626-4a ON063685 ON063885 Wang et al. (2023a) P crystallifera TNM F30331 MN062100 MN062147 Yurchenko et al. (2020b) P daweishanensis CLZhao 18600 * ORO94501 OR449932 Dong et al. (2024) P echinocystis KHL 6284 DQ677494 DQ681200 Larsson (2007b) P fissurata CLZhao 5848 MN864262 OM985777 Guan et al. (2020) P fissurata CLZhao 9421 MN864260 OM985776 Guan et al. (2020) P guttulifera CBS 107303 LT603016 LT603001 Kolarik and Vohnik (2018) P guttulifera NH 12012 (GB) DQ647501 or Hallenberg et al. (2007) P odontiiformis TMI 21347 DQ647496 = Hallenberg et al. (2007) P odontiiformis TMI 6824 DQ647500 = Hallenberg et al. (2007) P olivacea CLZhao 25896 * ORO94502 OR449933 Dong et al. (2024) P pallida UC 2022844 KP814208 = Rosenthal et al (2017) P pallida UC 2022887 KP814201 i Rosenthal et al (2017) P pertenuis NH 12429 (GB) DQ647486 r= Hallenberg et al. (2007) P. pertenuis NH 15115 (GB) DQ647487 re Hallenberg et al. (2007) P. praetermissa NH 10986 (GB) DQ647462 = Hallenberg et al. (2007) P praetermissa NH 11192 (GB) DQ647461 = Hallenberg et al. (2007) P. pubera CBS:464.86 MH861988 MH873680 Vu et al. (2019) P. pubera LWZ 20210624-16b ON063687 ON063887 Wang et al. (2023a) P punctata CLZhao 33720 PQ811414 PQ847497 Present study P punctata CLZhao 33732 * PQ811415 PQ847498 Present study P reticulate CLZhao 17066 OM985746 OM985783 Dong et al. (2024) P reticulate TNM F22559 MN062103 MN062151 Yurchenko et al. (2020b) P rude LWZ 20171026-7 ON063688 ON063888 Wang et al. (2023a) P subpraetermissa LWZ 20190816-3b ON063689 ON063889 Wang et al. (2023a) P. subpraetermissa Wu 950627 DQ647493 — Hallenberg et al. (2007) P. yunnanensis CLZhao 4810 MN864263 OM985788 Guan et al. (2020) P. yunnanensis CLZhao 6137 MN864266 - Guan et al. (2020) Phylloporia oreophila LWZ 20190811-27a ON063665 ON063865 Wang et al. (2023a) P radiate LWZ 20141122-6 ON063666 ON063866 Wang et al. (2023a) Porodaedalea himalayensis LWZ 20180903-21 ON063667 ON063867 Wang et al. (2023a) P laricis LWZ 20190724-9 ON063668 ON063868 Wang et al. (2023a) Sanghuangporus quercicola LWZ 20170821-18 ON063669 ON063869 Wang et al. (2023a) S. weigelae LWZ 20210623-2a ON063671 ON063870 Wang et al. (2023a) Skvortzovia dabieshanensis LWZ 20201017-55 MW414514 MW41 4460 Wang et al. (2023a) S. dabieshanensis LWZ 20210918-15b ON063694 ON063894 Wang et al. (2023a) S. furfurella KHL 10180 DQ873649 DQ873649 Yu et al. (2021) S. incana CLZhao 16338 * ORO096179 OR449950 Dong et al. (2024) S. yunnanensis CLZhao 16084 MW472754 MW473473 Wang et al. (2023a) S. yunnanensis CLZhao 16181 MW472755 MW473474 Dong et al. (2021) Thelephora ganbajun ZRL20151295 LT716082 KY418908 Liu et al. (2022) Tubulicrinis glebulosus LWZ 20180903-13 ON063705 a Wang et al. (2023a) T. pini CLZhao 3679 = OR449951 Dong et al. (2024) T. pini CLZhao 6881 * ORO96210 OR449952 Dong et al. (2024) T. yunnanensis CLZhao 3418 MT153879 MT153886 He et al. (2020) T. yunnanensis CLZhao 9717 MT153880 MT153887 He et al. (2020) Xylodon olivaceobubalinus CLZhao 25164 OR167771 OR449947 Dong et al. (2024) X. olivaceobubalinus CLZhao 25174 * OR167772 OR449948 Dong et al. (2024) was computed from the remaining trees. Branches were considered as signifi- cantly supported if they received a maximum likelihood bootstrap support val- ue (BS) of = 70%, a Maximum Parsimony bootstrap support value (BT) of = 70% or a Bayesian posterior probability (BPP) of = 0.95. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 36 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 100/100/1.00 - Hymenochaete dracaenicola Dai 22096 Hymenochaete dracaenicola Dai 22090 100/99}1.00 — Hymenochaete rubiginosa He 1049 . Hymenochaete rubiginosa LWZ 20201017-32 100/100/1.00 > Hymenochaete angustispora Dai 17049 Hymenochaete angustispora Dai 17045 100/10p/1.00 - Hymenochaete colliculosa Dai 16427 Hymenochaete colliculosa Dai 16428 10p/100/1.007 Hymenochaete bannaensis CLZhao 35884 Hymenochaete bannaensis CLZhao 35721* 100/97/1.00-- Hymenochaete subferruginea He 1598 s9/sv/1.00 - Aymenochaete subferruginea Cui 8122 100/100/1.00} j 99/g6/1.00- Hymenochaete boddingii MEH 69996 90/100/1.00| - tymenochaete boddingii MEH 66068 Hymenochaete xerantica LWZ 20190814-13b 100/100/1.00 ;- Hymenochaete sphaericola He 303 Hymenochaete sphaericola LWZ 20190808-2b 100/100/1.00 — Hymenochaete sharmae CAL 1535 Hymenochaete sharmae 66088 100/100/1.00 ——— P, Ne LW7Z 2014 99/9B/1.00_ —— Phy sooo/1.007 Hydne 1op/100/1. -/71/0.90 100/L00/1.00 7 Lyomyces niveus CL Lyomyces niveus CLZhao 6431 Lyomyces yunnanensis CLZhao 2463 Lyomyces asiaticus CLZhao 35719* Lyomyces asiaticus CLZhao 35703 Lyomyces zhaotongensis CLZhao 32878 Lyomyces niveomarginatus CLZhao 16360 88/98/0.99- Lyomyces wumengshanensis CLZhao 32800 Lyomyces wumengshanensis CLZhao 29374 Lyomyces incanus CLZhao 22813 Lyomyces ; Lyomyces sambuci 83SAMHYP Lyomyces sambuci KAS-JR7 | 91/89/1.00 Lyomyces orientalis GEL3376 190/100/1.00; Xylodon olivaceobubalinus CLZhao 25164 Xylodon olivaceobubalinus CLZhao 25174 * Fy PR 1Q0/100/1.00 " Fasciodontia bugellensis KAS-FD 10705a Schizoporac Fasciodontia brasiliensis MSK-F 7245a - Figure 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of the order Hymenochaetales based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values = 70%, parsimony bootstrap values = 50% and Bayesian posterior probabilities = 0.95, respectively. Results Molecular phylogeny The ITS+nLSU dataset (Fig. 1) comprised sequences from 102 fungal specimens representing 63 taxa. The dataset had an aligned length of 2,441 characters, of which 1,233 characters were constant, 204 were variable and parsimony-un- informative and 1,004 (50%) were parsimony-informative. Maximum Parsi- mony analysis yielded 3 equally parsimonious trees (TL = 7,192, Cl = 0.3420, HI = 0.6803, RI = 0.7080 and RC = 0.2263). The best model of nucleotide evo- lution for the ITS+nLSU dataset estimated and applied in the Bayesian analy- sis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 37 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 100]100/1.00) 100/100/1.00 Skvortzovia infront ie 0 : 96/59/1.00 Skvortzovia incana CLZhao ; 106/10d/1.00, Skvortzovia dabieshanensis L 100/100/.00 Skvortzovia dabieshanensis LW . Skvortzovia yunnanensis CLZhao 16181 100/100/1.00 Skvortzovia yunnanens CLZhao 16084 100/100/1.00; Peniophorella albohyme. CLZhao 33257 Peniophore 100/100/1]00, Penic 100/100/1.00 Peniophorella ) CERES ( Peniophorella punctata CLZhao 33720 100/100/1.00| ip lean et acalatice Oy ; Figure 1. Continued. similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.008504 (BI). The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 1) included six families within the Hymenochaetales, which were Hymenochaetaceae, Hyphodontiaceae, Penio- phorellaceae, Schizoporaceae, Skvortzoviaceae and Tubulicrinaceae, in which the new species Hymenochaete bannaensis was nested in Hymenochaetace- ae; two taxa Peniophorella albohymenia and P. punctata were nested in Penio- phorellaceae; the species Lyomyces asiaticus was grouped in Schizoporaceae. The ITS+nLSU dataset (Fig. 2) comprised sequences from 80 fun- gal specimens representing 71 taxa. The dataset had an aligned length of 2,285 characters, of which 1,479 characters were constant, 199 were variable and parsimony-uninformative and 607 (50%) were parsimony-in- formative. Maximum Parsimony analysis yielded 3 equally parsimonious trees (TL = 3,749, Cl = 0.3420, HI = 0.6580, RI = 0.5462 and RC = 0.1868). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 38 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Hymenochaete paucisetigera Cui 7845 Hymenochaete tabacina Dai 11635 Aymenochaete asetosa Dai 10756 Hymenochaete luteobadia He 8 Hymenochaete anomala He 592 100/100/1.00 aeons — Hymenochaete fulva He 640 — W— Hymenochaete yunnanensis He 1447 90/67/- '—— Hymenochaete separabilis He 460 100, — Hymenochaete minor He 933 “_ Hymenochaete parmastoi He 277 99/81/1.00 Hymenochaete rhododendricola He 389 Hymenochaete tasmanica He 449 Hymenochaete ochromarginata He 47 Hymenochaete rubiginosa He 1049 Hymenochaete tongbiguanensis He 1552 Hymenochaete fuliginosa He 1188 hoo 55 | —— Hymenochaete verruculosa Dai 17052 Wicker & Hymenochaete conchata MEH 70144 Hymenochaete rhabarbarina He 280 Hymenochaete rufomarginata He 1489 Hymenochaete unicolor He 468a Hymenochaete dracaenicola Dai 22096 Hymenochaete dracaenicola Dai 22090 /L.00 Hymenochaete borbonica CBS 731.86 00/100/1.00, Hvmenochaete angustispora Dai 17045 Hymenochaete angustispora Dai 17049 Hymenochaete tenuis He 779 Hymenochaete nanospora He 475 -/6/0.95 Hymenochaete cana He 1305 Hymenochaete macrochloae ARAN-Fungi 7079 Hymenochaete acerosa He 338 Hymenochaete minuscula He 253 Hymenochaete cinnamomea He 755 Aymenochaete orientalis He 4601 Aymenochaete epichiora He 525 Aymenochaeie colliculosa Dai 16427 Hymenochaetie colliculosa Dai 16428 Hymenochaete globispora He 911 Hymenochaete megaspora He 302 100/100/1.00 ; Hymenochaete bannaensis CLZh . Hymenochaete bannaensis CL7h : Hymenochaete muroiana He 405 Hymenochaete ulmicola He 864 100/100/1.00;— Hymenochaete damicornis URM 84263 — Hymenochaete damicornis URM 84261 Aymenochaete rheicolor Cui 8317 Hymenochaete attenuata He 28 1.00. Hymenochaete villosa He 537 — Hymenochaete berteroi He 1488 100/98) Hymenochaete cyclolamellata Cui 7393 Hymenochaete setipora Cui 6301 Hymenochaete boddingii MEH 69996 Hymenochaete boddingii MEH 66068 Hymenochaete subferruginea He 1598 79/R8/1. Hymenochaete subferruginea Cui 8122 Hymenochaete adusta He 207 100/100/100 ; ‘2vmenochaete xerantica LWZ 20190814-13b Hymenochaete xerantica Cui 9209 Hymenochaete quercicola He 373 FHymenochaete sinensis CLZhao 26040* Hymenochaete longispora He 217 '—— Hymenochaete huangshanensis He 432 Hymenochaete contiformis He 1166 100/100/1.00 — Hymenochaete sharmae CAL 1535 -/100/1.00 Hymenochaete sharmae 66088 Hymenochaete japonica He 245 Hymenochaete duportii AFTOL ID666 Hymenochaete murina He 569 Hymenochaete sphaerospora He 715 [———._ Hymenochaete legeri He 960 ____. Hymenochaete spathulata He 685 100/100/1.00 Hymenochaete floridea He 536 76/58/- — Hymenochaete cruenta He 766 94/22) Hymenochaete denticulata He 1271 Hymenochaete biformisetosa He 1445 __>—— Hymenochaete bambusicola He 4116 \__ Hymenochaete tropica He 574 '_ Hymenochaete innexa He 555 are Fomitiporia bannaensis MUCL 46950 Fomitiporia punctata MUCL 47629 98/100/ 93/50/- 92/85/- 100/100/1.00 50 Figure 2. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related spe- cies in Hymenochaete, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values > 70%, parsimony bootstrap values = 50% and Bayesian posterior probabilities = 0.95, respectively. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 39 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 100/100/1.00 r Lyvomyces wuliang. 99/98/1.00| + Lyomyces w 100/100/1.00 ; Lyvonryces m Lyomyces mic 1o0/100/1,00; Lyonryces gate: Lyomyces gates 100/100/1,00 ; Lyvonryces cremeus | 96/97/1.00 Lyomyces cremeus C 100/100/1.00- Lyomyces fasion Lyomyces fissuratus 100/100/1.00 - Lyoniyces erastii 23c Lyomyces erastii TAS 100/100/- Lyomyces bam 9$/94/1.00 Lyomyces bamb. 1oo/100{1.007 Lyonryces sambuci 85/56/1.00 Lyomyces sambuci — Lyomyces albopulver Lyomyces orientalis \ 100/100/-| Lvomvees fin 100/100/1.00[ | 1CeS | 100/100/1.00 | eee res fie | 100/100/1.00, Lyonryces w 77/85/1.00 gg ete Lyomyces w Lyomyces ma 00/100/1.00 Lyvomyces elaeidicola LW. Lyomvyces elaeidicola LU Lyomvyces griseliniae 100/100/1.00 - Lyomyces o 98/98/[L.00-— Lyomyces cr 93/-/1.00 100/100/1.00 ~-Lyomyces asiaticus € Lyomyces asiaticus — _9/1.90| 190/100/1.00 5 Lvomyces hengadh 77/54/1.00 100/100/1.00 100/100/1.00 yeas jane -/99/1.00 | 100/100/1.00 Lyomyces yunnane 100/100/1.00 ; Lyontyvees niveus ( | Lyomyces niveus C Lyvomyces vietnamensis He - Lyomyces niveomarginatus CLZhao 1|00/100/1.00 Lyomyces pruni GEL2327 Lyomyces pruni Ryberg 021018 (GB) 4 Fasciodontia brasiliensis MSK-F 7245a Fasciodontia bugellensis KAS-FD 10705a Outgroups 100/99/1.00 ——— 50 Figure 3. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related species in Lyomyces, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap values = 70%, parsimony bootstrap values = 50% and Bayesian posterior probabilities = 0.95, respectively. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 40 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 100/100/1.00; Peniophorella yunnan NSIS 88/80/-|_ ' Peniophorella yunnanei 100/98/1.007 Peniophorella reticulata Peniophorella reticu 99/98/1.00; Peniophorella aspersa T = Peniophorella aspersa T 100/100/1.09 Peniophorella odontiifo Peniophorella odontiifort mei Peniophorella rude LWZ 20 log/98/1.097-_Peniophorella olivacea ( Li 95/91/1.00]_ “ Peniophorella sulipreiele 2 100/190/1,00_ + Peniophorella albohymenia CLZhao 33187 3 Peniophorella albohymenia CLZhao BEY 100/100/1.00 _; Peniophorella praetern. NH 1098 | Peniophorella praetermissa | 100/100/1,00__- Peniophorella pertei Peniophorella pertet 99/100/1.00¢ Peniophorella crystallifera TN} ene crystaliffera | LWZ 100/100/1.00 Peniophorela lla’ 100/100/1.00 Peniophorella punctata CLZha0 1004100/1.00; Peniophorella pubera LWZ Peniophorella pubera C 99/99/1.00 - Peniophorella guttulifera Cl Peniophorella guttulifera N 100/100/1.00 98/86|1.00 Peniophorella echinocystis: Peniophorella daweis SIS C 190/100/1.00- Peniophorella pallida UC 20228 14 Peniophorella pallida UC 2022887 100/100/1.00 ; Peniophorella cremea CLZhao 1606 Peniophorella cremea CLZhao 1719 Basidioradulum mayi LWZ 20180510-18 Basidioradulum radula LWZ 20201017-62 50 Figure 4. Maximum Parsimony strict consensus tree illustrating the phylogeny of the two new species and related spe- cies in Peniophorella, based on ITS+nLSU sequences. Branches are labeled with Maximum Likelihood bootstrap val- ues = 70%, parsimony bootstrap values = 50% and Bayesian posterior probabilities = 0.95, respectively. The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP anal- ysis. The Bayesian analysis had an average standard deviation of split fre- quencies = 0.001385 (Bl) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 365. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 1) highlighted that the new spe- cies Hymenochaete bannaensis was sister to H. muroijana |. Hino & Katum. with strong supports values (100/100/1.00), and then was closely nested with H. colliculosa (Sacc.) Parmasto, H. globispora G.A. Escobar and H. me- gaspora S.H. He & Hai J. Li. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 4] Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species The ITS+nLSU dataset (Fig. 3) comprised sequences from 51 fungal speci- mens representing 32 taxa. The dataset had an aligned length of 2,066 characters, of which 1,366 characters were constant, 177 were variable and parsimony-unin- formative and 523 (50%) were parsimony-informative. Maximum Parsimony anal- ysis yielded 3 equally parsimonious trees (TL = 2,358, Cl = 0.4440, HI = 0.5560, RI = 0.6763 and RC = 0.3003). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.006833 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 306. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 3) indicated that the new species Lyomyces asi- aticus was Clustered with L. crustosus (Pers.) P. Karst., L. ochraceoalbus C.L. Zhao, L. hengduanensis Q. Yuan & C.L. Zhao and L. zhaotongensis Q. Yuan & C.L. Zhao. The ITS+nLSU dataset (Fig. 4) comprised sequences from 36 fungal spec- imens representing 212 taxa. The dataset had an aligned length of 2,016 characters, of which 1,497 characters were constant, 72 were variable and parsimony-uninformative and 447 (50%) were parsimony-informative. Max- imum Parsimony analysis yielded 3 equally parsimonious trees (TL = 1,235, Cl = 0.6024, HI = 0.3976, RI = 0.7813 and RC = 0.4707). The best model of nucleotide evolution for the ITS+nLSU dataset estimated and applied in the Bayesian analysis was found to be TIM3+I+G. Bayesian analysis and ML analy- sis resulted in a similar topology as in the MP analysis. The Bayesian analysis had an average standard deviation of split frequencies = 0.009797 (BI) and the effective sample size (ESS) across the two runs is double the average ESS (avg. ESS) = 563. The phylogram based on the ITS+nLSU rDNA gene regions (Fig. 3) revealed that the new species Peniophorella albohymenia was grouped with two taxa as P olivacea J.H. Dong & C.L. Zhao and P. subpraetermissa (Sheng H. Wu) K.H. Larss. Furthermore, the species P punctata Y.L. Deng & C.L. Zhao was the sister to P. fissurata C.L. Zhao with strong supports values (100/100/1.00). Taxonomy Hymenochaete bannaensis Y.L. Deng & C.L. Zhao, sp. nov. MycoBank No: 857317 Figs 5, 6, 7 Holotype. CHINA * Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85E, altitude 900 m asl., on the dead bamboo, leg. C.L. Zhao, 25 January 2024, CLZhao 35721 (SWFC). Etymology. Bannaensis (Lat.): referring to the locality (banna) of the type specimen. Diagnosis. Hymenochaete bannaensis is characterized by the flocculent basid- iomata with cinnamon to yellowish brown to rust-brown hymenial surface, gen- erative hyphae with simple septa and broadly ellipsoid to globose basidiospores. Description. Basidiomata annual, resupinate, closely adnate, flocculent, without odor or taste when fresh, up to 7 cm long, 3.5 cm wide, and 200 um thick. Hyme- nial surface smooth, cinnamon to yellowish brown when fresh, yellowish brown to rust-brown upon drying. Sterile margin yellowish brown, thinning out, up to 2 mm. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 42 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Figure 5. Basidiomata of Hymenochaete bannaensis (holotype, CLZhao 35721). Scale bars: 1 cm (A); 1 mm (B). Hyphal system monomitic; generative hyphae with simple-septa, brown, thick-walled, smooth, moderately branched, 2.4—2.9 um in diameter, IKI-, CB-, tissues darkening in KOH; subhymenial hyphae densely covered by crystals. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 43 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Cystidia and cystidioles absent. Basidia subcylindrical, colorless, thin- walled, with four sterigmata and a basal simple septum, 18.5-23 x 3.5-4 um; basidioles numerous, in shape similar to basidia but smaller. Setae abundant, distinctly thick-walled, subulate, with an acute tip, yellowish to reddish brown, 67-94 x 7-11 um, projecting out of the hymenium up to 33-44.5 um. Basidiospores broadly ellipsoid to globose, colorless, thin-walled, smooth, always filled with oil drop, CB-, (3.6-)3.7-4(-4.1) x (3.4-)3.5-3.9(-4) um, L = 3.87 um, W = 3.67 um, Q = 1.05-1.06 (n = 60/2). Another specimen (paratype) examined. CHINA * Yunnan Province, Xish- uangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85'E, altitude o o © cr ]@ Go © 2 a \ \ S ——— —— ge = —— A H fe Figure 6. Microscopic structures of Hymenochaete bannaensis (holotype, CLZhao 35721) A basidiospores B basidia and basidioles C setae D a section of hymenium. Scale bars: 5 um (A); 10 um (B-D). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 44 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Figure 7. Sections of hymenium of Hymenochaete bannaensis (holotype, CLZhao 35721). Scale bars: 10 um (A-C). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 45 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 25 January 2024, CLZhao 35884 (SWFC). Notes. Phylogenetically, Hymenochaete bannaensis is nested as sister to H. muroiana with strong supports (100/100/1.00) based on ITS+nLSU se- quences (Figs 1, 2). Morphologically, H. muroiana is different from H. ban- naensis by the brun suie basidiomata, smaller ellipsoid to subcylindrical ba- sidia (8-10 x 3 um) and narrower ovoid to ellipsoid basidiospores (3.5-4 x 2-2.6 um; Léger 1998). Hymenochaete acerosa S.H. He & Hai J. Li, H. cystidi- ata Parmasto and H. sinensis Y.C. Li & C.L. Zhao, are similar to H. bannaensis by thick-walled and acute setae. However, H. acerosa is distinguished from H. bannaensis by its effused and detachable basidiomata, longer setae (85- 170 x 5-8 um), wider clavate basidia (13-21 x 5-8 um) and larger basid- iospores (7-8.5 x 4.8-6 um; He and Liu 2011). Furthermore, H. cystidiata differs from H. bannaensis by its longer setae (60-100 x 7-10 um), and sub- cylindrical basidiospores (4.8-5.8 x 2.5-3.2 um; Parmasto 2012). Moreover, H. sinensis differs from H. bannaensis by having ceraceous basidiomata, coconut brown to brownish black hymenial surface, shorter barrel-shaped basidia (10-12 x 3.1-3.8 um) and longer ellipsoid to broadly ellipsoid basid- iospores (4-5 x 2.5-3.5 um; Li et al. 2024). Lyomyces asiaticus Y.L. Deng & C.L. Zhao, sp. nov. MycoBank No: 857318 Figs 8, 9, 10 Holotype. CHINA * Yunnan Province, Xishuangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85E, altitude 900 m asl., on the dead bamboo, leg. C.L. Zhao, 25 January 2024, CLZhao 35719 (SWFC). Etymology. Asiaticus (Lat.): referring to the continent (Asia) where the spe- cies was found. Diagnosis. Lyomyces asiaticus is characterized by the membranaceous ba- sidiomata with cream to pale-yellow hymenial surface with tuberculate, a mo- nomitic hyphal system with clamped generative hyphae, and ellipsoid basidio- spores 4.6-6.4 x 3-3.9 um. Description. Basidiomata annual, resupinate, closely adnate, membrana- ceous, without odor or taste when fresh, up to 5 cm long, 1.5 cm wide, and 100 um thick. Hymenial surface tuberculate, thin, white to cream when fresh, cream upon drying. Sterile margin white to cream, thinning out, up to 2 mm. Hyphal system monomitic; generative hyphae with clamp connections, color- less, thin-walled, smooth, moderately branched, with some crystals, 2-2.5 um in diameter, IKI-, CB-, tissues unchanged in KOH; subhymenial hyphae densely covered by crystals. Hymenium three kinds of cystidia: (1) tapering, colorless, thin-walled, smooth, filled with refractive oil-like matter, 19.5-27 x 1.8-2.3 um; (2) bottled, colorless, thin-walled, smooth, filled with refractive oil-like matter, 19.3-24.7 x 4.6—5.4 um; (3) halocystidia, colorless, thin-walled, smooth, filled with refrac- tive oil-like matter, 17-19 x 5.5-7 um. Basidia cylindrical, with a basal clamp connection and four sterigmata, filled with refractive oil-like matter, 17-21 x 3-7 um; basidioles numerous, in shape similar to basidia but smaller. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 A6 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species ‘ | =~ oe Set. >. ae. A mas Figure 8. Basidiomata of Lyomyces asiaticus (holotype, CLZhao 35719). Scale bars: 1 cm (A); 1 mm (B) Basidiospores ellipsoid, colorless, thin-walled, smooth, always filled with oil drop, CB-, (4.2—-)4.6—-6.4(-6.5) x (2.4—)3-3.9(—4) um, L = 5.63 um, W = 3.36 um, Q = 1.62-1.73 (n = 60/2). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 47 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-i iti Q =H, am =. = i) a = a 1s) I> 2 © © G) C2) © = sie r/o = =epelelecen FS) POY 7 in, > aa eG a fee fo ee ey n ACeIMTEE aA Ponte Figure 9. Microscopic structures of Lyomyces asiaticus (holotype, CLZhao 35719) A basidiospores B basidia and basid- ioles C tapering cystidia D bottled cystidia E halocystidia F a section of hymenium. Scale bars: 5um (A); 10 um (B-F). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 48 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species 7 4 7 c - = J . - et 7 4 . ; wi ¥ ~ a = ao . e = ; ote _ ** % 2 a! " ~ - > . | & . ” 4 Wig " 4 % - i q “ P = — x - ¢ - ” a ee ol Pa ‘ . _ i =f ” : ; “ . . : == Tig E . os / : " Figure 10. Sections of hymenium of Lyomyces asiaticus (holotype, CLZhao 35719). Scale bars: 10 pm (A-C). Another specimen (paratype) examined. CHINA * Yunnan Province, Xish- uangbanna, Wild elephant Valley, GPS coordinates: 22°17'N, 100°85E, altitude 900 m asl., on the fallen angiosperm branch, leg. C.L. Zhao, 25 January 2024, CLZhao 35703 (SWFC). Notes. The phylogenetic tree of ITS+nLSU (Fig. 3) showed that the new spe- cies Lyomyces asiaticus was clustered with L. crustosus and L. ochraceoalbus. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 49 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species However, morphologically, L. crustosus can be delimited from L. asiaticus by having effused basidiocarp, clavate basidia (26 x 4.5 um) and longer ellipsoidal to subcylindrical basidiospores (5-7.5 x 2.5-3 um; Karsten 1881). L. ochra- ceoalbus differs from L. asiaticus in its smooth hymenial surface, lacking a cystidium and shorter clavate basidia (11-16.5 x 3.5—5 um; Luo et al. 2021b). Morphologically, Lyomyces asiaticus reminds L. albopulverulentus C.L. Zhao, L. cremeus, L. denudatus Viner, L. macrosporus C.L. Zhao and L. wuliangshan- ensis C.L. Zhao by having the ellipsoid basidiospores. However, L. albopulver- ulentus can be separated from L. asiaticus by its pruinose hymenial surface and larger basidia (24.5-28.5 x 7-9 um) and larger basidiospores (8-10.5 x 5.5-7 um; Guan et al. 2023). L. cremeus is distinct from L. asiaticus by its smooth hymenial surface, present two types cystidia as capitate (20-40 x 3-5 um) and tapering (18-35 x 3-4.5 um) and thin-walled to slightly thick- walled basidiospores (Chen and Zhao 2020). In addition, L. denudatus is sepa- rated from L. asiaticus by the smooth hymenial surface, longer capitate cystidia (34.9-62 x 4—5.5 um) and suburniform basidia (15-21.1 x 3.8-5.5 um; Viner and Miettinen 2022). The species L. macrosporus differs from L. asiaticus due to its reticulate hymenial surface and longer basidia (22.2—-38 x 4.5—7 um) and larger basidiospores (6.7-8.9 x 4.4-5.4 um; Chen and Zhao 2020). Moreover, L. wuliangshanensis can be delimited from L. asiaticus by its smooth to more or less tuberculate hymenial surface and two kinds of cystidia as capitate (22-37 x 3-6 um) and tapering (21-35 x 4—6.5 um; Chen and Zhao 2020). Peniophorella albohymenia Y.L. Deng & C.L. Zhao, sp. nov. MycoBank No: 857319 Figs i123 Holotype. CHINA * Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 19 September 2023, CLZhao 33187 (SWFC). Etymology. Albohymenia (Lat.): referring to “albus”, the distinctive white hy- menium of the type specimen when fresh. Diagnosis. Peniophorella albohymenia is characterized by the membrana- ceous basidiomata with white hymenial surface, four types cystidia as stepha- nocyst, fusiform, cylindrical and capitate, and ellipsoid basidiospores measur- ing 9-10.9 x 4.5—5 um. Description. Basidiomata annual, resupinate, adnate, membranaceous, with- out odor or taste when fresh, up to 4.5 cm long, 1 cm wide, and 0.1 mm thick. Hymenial surface smooth, white when fresh and dry. Sterile margin distinctly, thin, white, up to 1 mm long. Hyphal system monomitic; generative hyphae with clamp connections, thin- walled, colorless, occasionally branched, 2.5-4 um in diameter, IKI-, CB-, tis- sues unchanged in KOH. Cystidia of four types: (1) stephanocyst, thin-walled, 9-18 x 7-8 um; (2) fu- siform cystidia, smooth, thin-walled, 29-31 x 7-9 um; (3) cylindrical cystid- ia, thin-walled, slightly constricted at the neck, the apical part encrusted with asteroid, 27-64 x 5-11 um; (4) capitate cystidia, thin-walled, the apical part MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 50 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species a _ ° : 1h == 4. Figure 11. Basidiomata of Peniophorella albohymenia (holotype, CLZhao 33187) A basidiomata on the substrate B char- acter hymenophore Scale bars: 1 cm (A); 1 mm (B). ie CRA ~ « @ . ’ ed TS Sri h : 7 i “a> £ _ = = au MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 5] Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Sa Gra Figure 12. Microscopic structures of Peniophorella albohymenia (holotype, CLZhao 33187) A basidiospores B basidia and basidioles C stephanocyst D fusiform cystidia E cylindrical cystidia F capitate cystidia G a section of the hymenium. Scale bars: 10 pm (A-G). encrusted with asteroid, 22-47 x 5-12 um. Basidia clavate, with four sterig- mata and a basal clamp connection, colorless, thin-walled, 20-28 x 7.5-9 um; basidioles in shape similar to basidia, but slightly smaller. Basidiospores ellipsoid, colorless, thin-walled, IKI-, CB-, (8.5-)9-10.9(-11.2) x (4.4-)4.5-5(-5.5) um, L = 9.87 um, W = 4.93 um, Q = 1.99-2.02 (n = 60/2). Another specimen (paratype) examined. CHINA + Yunnan Province, Zha- otong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordi- nates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 19 September 2023, CLZhao 33257 (SWFC). Notes. Our results indicate that the new species P. albohymenia was placed within Peniophorella inferring from the dataset of ITS+nLSU (Figs 1, 4). Mor- phologically, the species P albohymenia is similar to P daweishanensis J.H. Dong & C.L. Zhao and P. yunnanensis C.L. Zhao by having capitate cystidia, but P daweishanensis is distinct from P albohymenia by its buff to slightly yellow- ish, reticulate hymenial surface and longer basidia (31.5-38 x 7-9 um; Dong et al. 2024). P yunnanensis differs from P. albohymenia due to its grandinioid hymenial surface (Guan et al. 2020). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 52 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species » in Re? a Figure 13. Sections of hymenium of Peniophorella albohymenia (holotype, CLZhao 331 187), eae bars: 10 um te F). Peniophorella punctata Y.L. Deng & C.L. Zhao, sp. nov. MycoBank No: 857320 Figs 14, 15, 16 Holotype. CHINA * Yunnan Province, Zhaotong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordinates: 27°33'N, 103°27°E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 21 September 2023, CLZhao 33732 (SWFC). Etymology. Punctata (Lat.): referring to the punctate basidioma of the type specimen. Diagnosis. Peniophorella punctata is characterized by the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cys- tidia, and allantoid basidiospores measuring 9.5-12.5 x 4-4.8 um. Description. Basidiomata annual, resupinate, adnate, membranaceous, punc- tate, without odor or taste when fresh, up to 4cm long, 3 cm wide, and 0.1 mm thick. Hymenial surface smooth, white to pale yellow when fresh, turning to aurantiacus to avellaneus upon drying. Sterile margin distinctly, thin, white, up to 2 mm long. Hyphal system monomitic, generative hyphae with clamp connections, thin- walled, colorless, occasionally branched, 2.9-4.6 um in diameter, IKI-, CB-, tissues unchanged in KOH. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 53 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Pak a se i_” Rt iy ak : a ee a RRL TNS S'S. sd ee tI = Figure 14. Basidiomata of Peniophorella punctata (holotype, CLZhao 33732) A basidiomata on the substrate B character hymenophore. Scale bars: 1 cm (A); 1 mm (B). Cystidia fusiform, slightly constricted at the neck and forms a long beak, thin- walled, 31-57 x 9-13.5 um. Basidia clavate, slightly constricted in the middle, with four sterigmata and a basal clamp connection, colorless, thin-walled, 26.3- 39.8 x 8.1-9.5 tm; basidioles in shape similar to basidia, but slightly smaller. MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 54 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Dd e ¢ eet ‘all Figure 15. Microscopic structures of Peniophorella punctata (holotype, CLZhao 33732) A basidiospores B basidia and basidioles C fusiform cystidia D a section of the hymenium. Scale bars: 10 um (A-D). Basidiospores cylindrical to allantoid, colorless, thin-walled, IKI-, CB-, (9.1-)9.5-12.5(-12.9) x (3.7-)3.9-4.8(-—5.5) um, L = 10.89 um, W = 4.30 um, Q = 2.53-2.54 (n = 60/2). Another specimen (paratype) examined. CHINA + Yunnan Province, Zha- otong, Xiaocaoba Town, Wumengshan National Nature Reserve, GPS coordi- nates: 27°33'N, 103°27'E, altitude 2300 m asl., on fallen angiosperm branch, leg. C.L. Zhao, 21 September 2023, CLZhao 33720 (SWFC). Notes. The phylogenetic analysis indicates that species P punctata was placed within Peniophorella inferring from the dataset of ITS+nLSU. Morpholog- ically, P allantospora (Sheng H. Wu) K.H. Larss., P capitulata (Boidin & Gilles) K.H. Larss., P. flagellata (G. Cunn.) K.H. Larss., P. pallida (Bres.) K.H. Larss. and MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 55 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Figure 16. Sections of hymenium of Peniophorella punctata (holotype, CLZhao 33732). Scale bars: 10 um (A-C). MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 56 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species P. praetermissa (P. Karst.) K.H. Larss. are similar to P punctata based on the smooth hymenophore and allantoid basidiospores. However, P. allantospora dif- fers from P. punctata by its shorter subutriformia to subclavata basidia (17-27 x 7.0-8.5 um; Larsson 2007b). P. capitulata in its presence of subcylindrica lepto- cystidia (25-50 x 4-7 um; Larsson 2007b). P flagellata is distinct from P. punctata by its cream hymenial surface, obovate or subglobose stephanocysts, narrower basidia (28-40 x 7-8 um) and shorter basidiospores (8-9 x 5-6 um; Larsson 2007b). P. pallida can be delimited from P. punctata by its whitish to ochraceous hymenial surface and longer fusiform cystidia (50-70 x 6-8 um) and smaller basidia (20-25 x 5-6 um; Larsson 2007b). P praetermissa can be separated from P. punctata by presence of three types of cystidia as fusiform gloeocystidia (50-100 x 8-12 um), cylindrical leptocystidia (20-80 x 6-8 um) and stephano- cysts bowl-shaped, and narrower basidia (20-30 x 6-7 um; Larsson 2007b). Discussion Many recently described wood-inhabiting fungal taxa have been reported world- wide, including in the genera Hymenochaete, Lyomyces and Peniophorella (Chen et al. 2017; Kan etal. 201 7a, b; Pacheco et al. 2018; Miettinen et al. 2019; Viner and Mi- ettinen 2022; Dong et al. 2024). The Xishuangbanna and Zhaotong are situated in the southwest of China; these areas become focal points for fungal diversity in Chi- na due to their complex topography and diverse ecosystems. In our study, four new species were found from Xishuangbanna and Zhaotong, Yunnan Province, China. The family Hymenochaetaceae is characterized by annual to perennial, brown- ish basidiomata with a xanthochroic reaction in KOH, poroid or corticioid hymeno- phore, generative hyphae without clamp connections and setal elements present or absent (Wu et al. 2022a, b). Some forest pathogens species are mainly located in the genus Coniferiporia L.W. Zhou & Y.C. Dai, Onnia P. Karst. and Pyrrhoderma Imazeki (Zhou et al. 2016; Ji et al. 2017). Furthermore, Inonotus obliquus (Fr.) Pilat and Sanghuangporus sanghuang (Sheng H. Wu, T. Hatt. & Y.C. Dai) Sheng H. Wu, L.W. Zhou & Y.C. Dai have therapeutic properties (Wu et al. 2019b; Lv et al. 2023; Zhang et al. 2023a; Ma et al. 2024). Hymenochaetaceae is typed with the genus Hymenochaete Lév., which was erected in 1846 and typified by H. ru- biginosa (Dicks.) Lév. The genus Hymenochaete can be identified by the annual to perennial, resupinate, effused-reflexed to pileate basidiomata with smooth, lamellate, tuberculate, poroid or hydnoid hymenophore, hyphal system monomit- ic or dimitic, presence of setae, and colorless, thin-walled, narrowly cylindrical to globose basidiospores (Léger 1998; Parmasto 2001; He and Dai 2012). There are some characteristics that can be used to circumscribe the genus, such as brown basidiomata darkening in potassium hydroxide, simple-septate genera- tive hyphae, brown setae, and causing a white rot (Léger 1998; Parmasto 2001). In the present study, the new species H. bannaensis is distinguished by flocculent basidiomata with cinnamon to yellowish brown to rust-brown hymenial surface, generative hyphae with simple septa and broadly ellipsoid to globose basidio- spores. Phylogenetically, H. bannaensis was close to H. colliculosa, H. globispora, and H. megaspora. However, morphologically, H. colliculosa is distinguished from H. bannaensis by its brown hymenial surface with tuberculate and larger ellipsoid basidiospores measuring 6—7.5 x 4—4.5 um (Léger 1998). Furthermore, H. globis- pora differs from H. bannaensis by its deep reddish-brown hymenial surface with MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 57 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species granular, longer setae (150 um) with crystal, wider basidia (15-18 x 4.5—5.5 um) and globular basidiospores (4 x 5.5 um; Léger 1990). Moreover, H. megaspora is distinct from H. bannaensis by having effused or effused-reflexed with slightly elevated margins basidiomata (150-600 um thick), grayish brown to dark gray, silky, tomentose, concentrically sulcate and zonate pileal surface, smooth or tu- berculate hymenophore with pale mouse-gray to vinaceous gray, longer setae (90-120 x 8-13 um), larger clavate basidia (25-32 x 5-8 um) and larger, broadly ellipsoid basidiospores measuring 7.5-10 x 5-7 um (He and Liu 2011). The genus Lyomyces P. Karst. (Schizoporaceae) was established by Karsten (1881) with L. sambuci (Pers.) P. Karst. as the type species. It is characterized by the resupinate-to-effused basidiomata with a smooth to odontioid hymenophore, a monomitic hyphal system with generative hyphae bearing clamp connections, the presence of several types of cystidia and with smooth, thin- to slightly thick-walled basidiospores (Karsten 1881; Bernicchia and Gorjén 2010). Previously, 77 specific and infraspecific names were registered in the Index Fungorum (http://www.index- fungorum.org; accessed on 24 March 2025), of which approximately 65 species of Lyomyces are currently accepted (Cunningham 1963; Dai 2011; Gafforov et al. 2017; Luo et al. 2021a; Yuan et al. 2024; Dai et al. 2025). In this study, the new species Lyomyces asiaticus is characterized by the membranaceous basidiomata with white to cream hymenial surface with tuberculate, a monomitic hyphal sys- tem with clamped generative hyphae and ellipsoid basidiospores. The phylogenet- ic tree of ITS+nLSU (Figs 1, 3) showed that L. asiaticus was grouped closely with L. hengduanensis and L. zhaotongensis. However, morphologically, L. hengduanen- sis is distinct from L. asiaticus by having pruinose hymenial surface, fusoid cystidia (17.5-25 x 3-4 um) and subclavate cystidia (16-23 x 3—4.5 um), and smaller clav- ate basidia (10.5-14 x 3.5—5 um; Yuan et al. 2024). L. zhaotongensis is distinguish- able from L. asiaticus by its farinaceous basidiomata, fusoid cystidia (16-20.5 x 2.5-3.5 ym), smaller clavate basidia (14-16.5 x 2.5-3.5 um) and smaller broadly ellipsoid basidiospores measuring 2.6—-3.5 x 2.5-3 um (Yuan et al. 2024). The family Peniophorellaceae L.W. Zhou et al. was established by Wang et al. (2023a), to include the genus Peniophorella P. Karst, typed with P. pubera (Fr.) P. Karst. Species of the family are characterized by annual, resupinate, effused, adnate, thin, ceraceous basidiomata with smooth to tuberculate, white to yellow- ish hymenophore, a monomitic hyphal system with clamped generative hyphae thin-walled, and colorless, the presence of different kinds of cystidia, metuloids, gloeocystidia or leptocystidia, echinulate cells usually present, narrowly to broad- ly clavate basidia with four sterigmata, and hyaline, thin-walled, smooth, ellipsoid, cylindrical or allantoid, inamyloid, acyanophilous basidiospores with oily contents (Wang et al. 2023a). So far, 37 species have been accepted in the genus world- wide (Prasher 2015; Guan et al. 2020; Xu et al. 2020; Dong et al. 2024; Liu et al. 2024). In the present study, two new species have been identified; P albohymenia is delimited by its membranaceous basidiomata with white hymenial surface, four types cystidia as stephanocyst, fusiform, cylindrical and capitate, and ellipsoid ba- sidiospores. Furthermore, P punctata is unique in the membranaceous, punctate basidiomata with white to pale yellow hymenial surface, fusiform cystidia, and al- lantoid basidiospores. In our phylogenies (Figs 1, 4), P albohymenia was grouped with P olivacea and P. subpraetermissa with strong supports. Morphologically, P olivacea can be separated from P. albohymenia by having the ceraceous to far- inaceous basidiomata, grayish olivaceous hymenial surface, two types cystidia MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 58 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species as fusiform (28.5-39 x 8.5-11 um) and halocystidia (42-50 x 8-9 um), smaller basidia (17.5-20 x 6-7 um) and smaller basidiospores (6.5-7.5 x 3.2—4.5 um; Dong et al. 2024). P subpraetermissa is distinct from P albohymenia by its lon- ger subclavata basidia (20-35 x 6-8 um) and smaller basidiospores (6.2-7.5 x 4-5 um; Wu 1997). Furthermore, P punctata was the sister to P. fissurata with strong supports. However, morphologically, the latter having the ceraceous to corneus basidiomata, smooth to tuberculate and white to cream hymenial sur- face and larger fusiform cystidia (28-65 x 6.5-15 um; Guan et al. 2020). The wood-inhabiting fungi are an extensively studied group of Basidiomyco- ta, and the taxa of Hymenochaetales play a core group in the wood-inhabiting fungi (Dai 2012; Ryvarden and Melo 2014; Liu et al. 2021; Zhou et al. 2022; Deng et al. 2024; Wang et al. 2024), but the species of Hymenochaetales diversity is still not well-known in China, especially in subtropical and tropical areas, and many recently described taxa of this ecologically important Hymenochaetales group were reported from China (Zhao et al. 2014, 2015, 2016; Chen et al. 2020; Guan et al. 2021; Yu et al. 2021; Dong et al. 2024). In the present study, four new species within the order Hymenochaetales are described, based on both morphological and molecular phylogenetic analyses, and are also from the subtropics. This study enriches the wood-inhabiting fungal diversity in China. Additional information Conflict of interest The authors have declared that no competing interests exist. Ethical statement No ethical statement was reported. Funding The research was supported by the National Natural Science Foundation of China (Proj- ect Nos. 32170004, U2102220), Forestry and Grass Science and Technology Innovation Joint Project of Yunnan Province (Project No. 202404CB090008), and the High-level Tal- ents Program of Yunnan Province (YNQR-QNRC-2018-111), and the Science Foundation of Education Department of Yunnan Province (2025Y0845). Author contributions Conceptualization: HY, CZ. Data curation: CZ, HY, QL, MC. Formal analysis: CZ, LL, MC, QL, SZ, YD, HY. Funding acquisition: CZ, HY. Investigation: CZ, HY, YD. Methodology: HY, YD, CZ. Project administration: CZ. Resources: HY, CZ. Software: CZ, HY, MC, QL, SZ, YD, LL. Supervision: HY, CZ, YD. Validation: YD, CZ, HY. Visualization: CZ, HY, YD. Writing - original draft: HY, SZ, YD, CZ, MC, LL. Writing - review and editing: YD, HY, CZ. Author ORCIDs Yinglian Deng ® https://orcid.org/0000-0002-8220-508X Meng Chen © https://orcid.org/0009-0005-9916-8704 Linfeng Liu © https://orcid.org/0009-0003-4058-301X Sicheng Zhang ® https://orcid.org/0009-0003-6287-9823 Haisheng Yuan © https://orcid.org/0000-0001-7056-140X Changlin Zhao ® https://orcid.org/0000-0002-8668-1075 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 59 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Data availability All of the data that support the findings of this study are available in the main text. References Baltazar JM, Pildain MB, Gorjon SP. da Silveira RMB, Rajchenberg M (2014) Phylogenetic relationships of Hydnum peroxydatum support the synonymy of Hydnochaete with Hymenochaete (Hymenochaetaceae, Agaricomycetes). Mycologia 106: 323-327. https://doi.org/10.3852/13-154 Bernicchia A, Gorjon SP (2010) Fungi Europaei 12: Corticiaceae s.|. Alassio: Edizioni Candusso, Italy, 1008 pp. Chen JZ, Zhao CL (2020) Morphological and molecular identification of four new resu- pinate species of Lyomyces (Hymenochaetales) from southern China. MycoKeys 65: 101-118. https://doi.org/10.3897/mycokeys.65.48660 Chen CC, Wu SH, Chen CY (2017) Three new species of Hyphodontia s.|. (Basidiomy- cota) with poroid or raduloid hymenophore. Mycological Progress 16(5): 553-564. https://doi.org/10.1007/s11557-01 7-1286-0 Chen Q, Du P Vlasak J, Wu F, Dai YC (2020) Global diversity and phylogeny of Fusco- poria (Hymenochaetales, Basidiomycota). Mycosphere 11: 1477-1513. https://doi. org/10.5943/mycosphere/11/1/10 Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxon- omy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137-392. https://doi.org/10.1007/s13225-019-00427-4 Cunningham GH (1963) The Thelephoraceae of Australia and New Zealand. Bulletin of the New Zealand Department of Scientific and Industrial Research 145: 1-359. Dai YC (2011) A revised checklist of corticioid and hydnoid fungi in China for 2010. My- coscience 52(1): 69-79. https://doi.org/10.1007/S10267-010-0068-1 Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese poly- pores. Mycoscience 53(1): 49-80. https://doi.org/10.1007/s10267-01 1-0134-3 Dai YC, Yang ZL, Cui BK, Wu G, Yuan HS, Zhou LW, He SH, Ge ZW, Wu F, Wei YL, Yuan Y, Si J (2021) Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema 40: 770-805. htps://https://doi.org/10.13346/j.mycosystema.210036 Dai YF, Yuan Q, Yang X, Liu R, Liu DF, Yuan HS, Zhao CL (2025) Morphological character- istics and phylogenetic analyses reveal five new species of Hymenochaetales (Agar- icomycetes, Basidiomycota) from southwestern China. MycoKeys 114: 133-175. https://doi.org/10.3897/mycokeys.114.143851 Deng YL, Jabeen SN, Zhao CL (2024) Species diversity and taxonomy of Vararia (Rus- sulales, Basidiomycota) with descriptions of six species from Southwestern China. MycoKeys 103: 97-128. https://doi.org/10.3897/mycokeys.103.118980 Dong JH, He X, Zhao CL (2021) Skvortzovia yunnanensis, a new species of corticioid fungus from southern China. Kew Bulletin 76(2): 549-555. https://doi.org/10.1007/ $12225-021-09959-y Dong JH, Li Q, Yuan Q, Luo YX, Zhang XC, Dai YF, Zhou Q, Liu XF, Deng YL, Zhou HM, Muhammad A, Zhao CL (2024) Species diversity, taxonomy, molecular systematics and divergence time of wood-inhabiting fungi in Yunnan-Guizhou Plateau, Asia. My- cosphere 15: 1110-1293. https://doi.org/10.5943/mycosphere/15/1/10 Du P Cao TX, Wu YD, Zhou M, Liu ZB (2021) Two new species of Hymenochaetace- ae on Dracaena cambodiana from tropical China. MycoKeys 80: 1-17. https://doi. org/10.3897/mycokeys.80.63997 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 60 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using boot- strap. Evolution; International Journal of Organic Evolution 39: 783-791. https://doi. org/10.2307/2408678 Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martinez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089): 1715- 1719. https://doi.org/10.1126/science.1221748 Gafforov Y, Riebesehl J, Ordynets A, Langer E, Yarasheva M, Ghobad-Nejhad M, Zhou LW, Wang XW, Gugliotta AM (2017) Hyphodontia (Hymenochaetales, Basidiomycota) and similar taxa from Central Asia. Botany 95(11): 1041-1056. https://doi.org/10.1139/ cjb-2017-0115 Guan QX, Zhao TJ, Zhao CL (2020) Morphological characters and phylogenetic analyses reveal two new species of Peniophorella from southern China. Mycological Progress 19: 397-404. https://doi.org/10.1007/s11557-020-01568-6 Guan QX, Li YF, Zhao CL (2021) Morphological and phylogenetic evidence for recogni- tion of two new species of Hyphoderma (Basidiomycota) from southern China, with a key to all Chinese Hyphoderma. MycoKeys 83: 145-160. https://doi.org/10.3897/ mycokeys.83.69909 Guan QX, Huang J, Huang J, Zhao CL (2023) Five new species of Schizoporaceae (Ba- sidiomycota, Hymenochaetales) from East Asia. MycoKeys 96: 25-56. https://doi. org/10.3897/mycokeys.96.99327 Hallenberg N, Nilsson RH, Antonelli A, Wu SH, Maekawa N, Nordén B (2007) The Pe- niophorella praetermissa species complex (Basidiomycota). Mycological Research 111(12): 1366-1376. https://doi.org/10.1016/j.mycres.2007.10.001 He SH, Dai YC (2012) Taxonomy and phylogeny of Hymenochaete and allied genera of Hymenochaetaceae (Basidiomycota) in China. Fungal Diversity 56: 77-93. https:// doi.org/10.1007/s13225-012-01 74-9 He SH, Liu SL (2011) Two new species of Hymenochaete (Hymenochaetales) from Chi- na. Mycotaxon 115: 375-382. https://doi.org/10.5248/115.375 He SH, Liu SL, Li HJ, Dai YC (2017) Two new species of Hymenochaete (Hymenochaeta- ceae, Basidiomycota) and H. colliculosa new to China from Shanxi Province. Phyto- taxa 324(2): 168-178. https://doi.org/10.11646/phytotaxa.324.2.5 He X, Shi ZJ, Zhao CL (2020) Morphological and molecular identification of two new species of Tubulicrinis (Hymenochaetaceae, Hymenochaetales) from southern Chi- na. Mycoscience 61: 184-189. https://doi.org/10.1016/j.myc.2020.03.008 He MQ, Cao B, Liu F, Boekhout T, Denchev TT, Schoutteten N, Denchev CM, Kemler M, Gorjon SP, Begerow D, Valenzuela R, et al. (2024) Phylogenomics, divergence times and notes of orders in Basidiomycota. Fungal Diversity 126: 127-406. https://doi. org/10.1007/s13225-024-00535-w Hibbett DS, Bauer R, Binder M, Giachini AJ, Hosaka K, Justo A, Larsson E, Larsson KH, Lawrey JD, Miettinen O, Nagy LG (2014) 14 Agaricomycetes. In: McLaughlin D, Spata- fora J (Eds) Systematics and Evolution. The Mycota, Vol. 7A. Springer, Berlin, Heidel- berg, 373-429. https://doi.org/10.1007/978-3-642-55318-9_14 James TY, Stajich JE, Hittinger CT, Rokas A (2020) Toward a fully resolved fungal tree of life. Annual Review of Microbiology 74: 291-313. https://doi.org/10.1146/an- nurev-micro-022020-051835 Ji XH, He SH, Chen JJ, Si J, Wu F, Zhou LW, Vlasak J, Tian XM, Dai YC (2017) Global diversity and phylogeny of Onnia (Hymenochaetaceae) species on gymnosperms. Mycologia 109: 27-34. https://doi.org/10.1080/00275514.2016.1274619 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 61 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjokvist E, Lindner D, Nakasone K, Niemela T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classifi- cation of the Polyporales (Basidiomycota). Fungal Biology 121(9): 798-824. https:// doi.org/10.1016/j.funbio.2017.05.010 Kan YH, Gafforov Y, Li T, Zhou LW (2017a) Hyphodontia zhixiangii sp. nov. (Schizopo- raceae, Basidiomycota) from Uzbekistan. Phytotaxa 299(2): 273-279. https://doi. org/10.11646/phytotaxa.299.2.12 Kan YH, Qin WM, Zhou LW (2017b) Hyphodontia mollissima sp. nov. (Schizoporaceae, Hymenochaetales) from Hainan, southern China. Mycoscience 58(4): 297-301. https://doi.org/10.1016/j.myc.2017.04.003 Karsten PA (1881) Enumeratio Thelephorearum Fr. et Clavariearum Fr. Fennicarum, sys- temate novo dispositarum. Revue Mycologique Toulouse 3(9): 21-23. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. https://doi.org/10.1093/bib/bbx108 Kolarik M, Vohnik M (2018) When the ribosomal DNA does not tell the truth: The case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology 122: 1-18. https://doi.org/10.1016/j.fun- bio.2017.09.006 Larsen M, Cobb-Poulle LA (1990) Phellinus (Hymenochaetaceae). A survey of the world taxa. Synop Fungorum 3: 1-206. https://doi.org/10.2307/3760175 Larsson KH (2007a) Re-thinking the classification of corticioid fungi. Mycological Re- search 111: 1040-1063. https://doi.org/10.1016/j.mycres.2007.08.001 Larsson KH (2007b) Molecular phylogeny of Hyphoderma and the reinstatement of Peniophorella. Mycological Research 111: 185-195. https://doi.org/10.1016/j.my- cres.2006.10.002 Larsson A (2014) AliView: A fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276-3278. https://doi.org/10.1093/bioinformatics/btu531 Larsson KH, Parmasto E, Fischer M, Langer E, Nakasone KK, Redhead SA (2006) Hy- menochaetales: A molecular phylogeny for the hymenochaetoid clade. Mycologia 98(6): 926-936. https://doi.org/10.1080/15572536.2006.11832622 Léger JC (1990) Etude critique et validation des espéces nouvelles d’Hymenochaete décrites par G.A. Escobar. Cryptogamie. Mycologie 11(4): 289-312. https://doi. org/10.5962/p.354325 Léger JC (1998) Le genre Hymenochaete Léveillé. Bibliotheca Mycologica 171: 1-319. Li YC, Chen ML, Xiao WY, Zhang JZ, Zhao CL (2024) Molecular phylogeny and morphol- ogy reveal a new Hymenochaete species (Hymenochaetaceae, Basidiomycota) from China. Phytotaxa 664(3): 159-171. https://doi.org/10.11646/phytotaxa.664.3.1 Liu ZB, Zhou M, Yuan Y, Dai YC (2021) Global diversity and taxonomy of Sidera (Hy- menochaetales, Basidiomycota): Four new species and keys to species of the genus. Journal of Fungi 7: 251. https://doi.org/10.3390/jof7040251 Liu SL, Zhou LW, He SH, Wang XW, May TW, He G, Chen SL (2022) Trechisporales emend- ed with a segregation of Sistotremastrales ord. nov. (Basidiomycota). Mycosphere 13: 862-954. https://doi.org/10.5943/mycosphere/13/1/11 Liu SL, Wang XW, Li GJ, Deng CY, Rossi W, Leonardi M, Liimatainen K, Kekki T, Niskanen T, Smith ME, Ammirati J (2024) Fungal diversity notes 1717-1817: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 124(1): 1-216. https://doi.org/10.1007/s13225-023-00529-0 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 62 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Luo X, Chen YH, Zhao CL (2021a) Morphological and phylogenetic characterization of fungi within Hymenochaetales: Introducing two new species from southern China. Nordic Journal of Botany 12(12): 39. https://doi.org/10.1111/njb.03414 Luo X, Chen YH, Zhao CL (2021b) Lyomyces fissuratus and L. fumosus (Schizoporace- ae, Hymenochaetales), new species from southern China. Annales Botanici Fennici 4(4-6): 58. https://doi.org/10.5735/085.058.0404 Lv GY, Song TT, Zhang YY, Cai WM, Zhang ZF (2023) A comparative study on anti- oxidant activities of fermentation products of Sanghuangporus sanghuang and S. vaninii based on UPLC-triple-TOF-MS. Mycosystema 42(4): 939-948. https://doi. org/10.13346/j.mycosystema.220125 Ma JC, Wei JR, Wang XR, Chen G, Sun HC, Li N (2024) Extracts of Sanghuangporus vaninii inhibit SARS-CoV-2 and inflammation. Mycosystema 43(1): 93-105. https:// doi.org/10.13346/j.mycosystema.230199 Mao WL, Wu YD, Liu HG, Yuan Y, Dai YC (2023) A contribution to Porogramme (Poly- poraceae, Agaricomycetes) and related genera. IMA Fungus 14: 5. https://doi. org/10.1186/s43008-023-00110-z Miettinen O, Larsson KH, Spirin V (2019) Hydnoporia, an older name for Pseudochaete and Hymenochaetopsis, and typification of the genus Hymenochaete (Hymeno- chaetales, Basidiomycota). Fungal Systematics and Evolution 4: 77-96. https://doi. org/10.3114/fuse.2019.04.07 Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES Science Gateway: Enabling high-im- pact science for phylogenetics researchers with limited resources. Association for Computing Machinery 39: 1-8. https://doi.org/10.1145/2335755.2335836 Nie T, Tian Y, Liu SL, Yang J, He SH (2017) Species of Hymenochaete (Hymenochaetales, Basidiomycota) on bamboos from East Asia, with descriptions of two new species. MycoKeys 20: 51-65. https://doi.org/10.3897/mycokeys.20.11754 Nylander JAA (2004) MrModeltest v.2. Program distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden. Osman MAM, El-Nuby ASM (2023) First record of Efibula tuberculata (Basidiomyco- ta: Polyporales) isolated from sugarcane in Egypt. Archiv fiir Phytopathologie und Pflanzenschutz 56: 295-306. https://doi.org/10.1080/03235408.2023.2184231 Pacheco MC, Valenzuela R, Raymundo T, Pacheco L (2018) Hymenochaete cifuentesii, H. potosina, and H. raduloides spp. nov. from the tropical dry forest of Mexico. Myco- taxon 133: 499-512. https://doi.org/10.5248/133.499 Parmasto E (2001) Hymenochaetoid fungi (Basidiomycota) of North America. Mycotax- on 79::107-1-76. Parmasto E (2012) New taxa of Hymenochaete (Agaricomycetes, Hymenochaetales) with a note on H. caucasica. Mycotaxon 121: 477-484. https://doi.org/10.5248/121.477 Parmasto E, Saar |, Larsson E, Rummo S (2014) Phylogenetic taxonomy of Hymeno- chaete and related genera (Hymenochaetales). Mycological Progress 13: 55-64. https://doi.org/10.1007/s11557-013-0891-9 Petersen JH (1996) The danish mycological society's colour-chart. Foreningen til Svam- pekundskabens Fremme, Greve. Prasher IB (2015) Wood-rotting non-gilled Agaricomycetes of Himalayas. Fungal Diver- sity Research Series, Chiang Rai, 653 pp. https://doi.org/10.1007/978-94-01 7-9858-7 Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625- 634. https://doi.org/10.1016/S0953-7562(09)80409-7 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 63 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Riebesehl J, Langer E (2017) Hyphodontia s.|. (Hymenochaetales, Basidiomycota): 35 new combinations and new keys to currently all 120 species. Mycological Progress 16: 637-666. https://doi.org/10.1007/s11557-017-1299-8 Riebesehl J, Langer EJ, Ordynets A, Striegel MM, Witzany C (2015) Hyphodontia bor- bonica, a new species from La Réunion. Mycological Progress 14: 1-7. https://doi. org/10.1007/s11557-015-1126-z Riebesehl J, Yurchenko E, Nakasone KK, Langer E (2019) Phylogenetic and morpholog- ical studies in Xylodon (Hymenochaetales, Basidiomycota) with the addition of four new species. Mycokeys 47: 97-137. https://doi.org/10.3897/mycokeys.47.31130 Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna §, et al. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539-542. https://doi.org/10.1093/ sysbio/sys029 Rosenthal LM, Larsson KH, Branco S, Chung JA, Glassman Sl, Liao HL, Peay KG, Smith DP Talbot JM, Taylor JW, Vellinga EC (2017) Survey of corticioid fungi in North Amer- ican pinaceous forests reveals hyper diversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. Mycologia 109: 115-127. https:// doi.org/10.1080/00275514.2017.1281677 Ryvarden L (2005) The genus Inonotus, a synopsis. Synopsis Fungorum 21: 1-149. Ryvarden L, Melo | (2014) Poroid fungi of Europe. Synopsis Fungorum 31: 1-455. Telleria MT, Duefias M, Beltran-Tejera E, Rodriguez-Armas JL, Martin MP (2012) A new species of Hyphoderma (Meruliaceae, Polyporales) and its discrimination from close- ly related taxa. Mycologia 104: 1121-1132. https://doi.org/10.3852/11-344 Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172(8): 4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 Viner |, Miettinen O (2022) Lyomyces denudatus, a new species with a disjunct distribu- tion. Lilloa 59: 377-385. https://doi.org/10.30550/j.lil/2022.59.S/2022.09.14 Viner |, Bortnikov F, Miettinen O (2022) On six African species of Lyomyces and Xylodon. Fun- gal Systematics and Evolution 8: 163-178. https://doi.org/10.3114/fuse.2021.08.13 Vu D, Groenewald M, Vries M, GehrmannT, Stielow B, Eberhardt U (2019) Large-scale gen- eration and analysis of filamentous fungal DNA barcodes boosts coverage for king- dom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1): 135-154. https://doi.org/10.1016/j.simyco.2018.05.001 Wang XW, May TW, Liu SL, Zhou LW (2021) Towards a natural classification of Hypho- dontia sensu lato and the trait evolution of basidiomata within Hymenochaetales (Ba- sidiomycota). Journal of Fungi 7(6): 478. https://doi.org/10.3390/jof7060478 Wang XW, Liu SL, Zhou LW (2023a) An updated taxonomic framework of Hymeno- chaetales (Agaricomycetes, Basidiomycota). Mycosphere 14: 452-496. https://doi. org/10.5943/mycosphere/14/1/6 Wang CG, Zhao H, Liu HG, Zeng GY, Yuan Y, Dai YC (2023b) A multi-gene phylogeny clar- ifies species diversity, taxonomy, and divergence times of Ceriporia and other related genera in Irpicaceae (Polyporales, Basidiomycota). Mycosphere 14(1): 1665-1729. https://doi.org/10.5943/mycosphere/14/1/19 Wang CG, Dai YC, Kout J, Gates GM, Liu HG, Yuan Y, Vilasak J (2024) Multi-gene phylog- eny and taxonomy of Physisporinus (Polyporales, Basidiomycota). Mycosphere 15: 1455-1521. https://doi.org/10.5943/mycosphere/1 5/1/12 White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 64 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species TJ (Eds) PCR protocols: A Guide to Methods And Applications. Academic Press, San Diego, 315-322. https://doi.org/10.1016/B978-0-12-3721 80-8.50042-1 Wijayawardene NN, Phillips AJ, Pereira DS, Dai DQ, Aptroot A, Monteiro JS, Druzhinina IS, Cai F, Fan X, Selbmann L, Coleine C (2022) Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). Fungal Diversity 114: 463-490. https://doi.org/10.1007/s13225-022-00500-5 Wu SH (1997) New species and new records of Hyphoderma (Basidiomycotina) from Taiwan. Botanical Bulletin of Academia Sinica: 38. Wu YD, Yuan Y (2020) Morphological characters and molecular data reveal a new spe- cies of Porodaedalea (Hymenochaetaceae, Basidiomycota) from China. Mycosyste- ma 39(2): 256-264. Wu F, Ren GJ, Wang L, Oliveira-Filho JRC, Gibertoni TB, Dai YC (2019a) An updat- ed phylogeny and diversity of Phylloporia (Hymenochaetales): Eight new spe- cies and keys to species of the genus. Mycological Progress 18: 615-639. https://doi.org/10.1007/s11557-019-01476-4 Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019b) Resource diversity of Chinese mac- rofungi: Edible, medicinal and poisonous species. Fungal Diversity 98: 1-76. https:// doi.org/10.1007/s13225-01 9-00432-7 Wu F, Man XW, Tohtirjap A, Dai YC (2022b) A comparison of polypore fungal and species composition in forest ecosystems of China, North America, and Europe. Forest Eco- systems 9: 100051. https://doi.org/10.1016/j.fecs.2022.100051 Wu F, Zhou LW, Vlasak J, Dai YC (2022a) Global diversity and systematics of Hymeno- chaetaceae with poroid hymenophore. Fungal Diversity 113: 1-192. https://doi. org/10.1007/s13225-021-00496-4 Xu J, Guan QX, Zhao CL (2020) Peniophorella cremea sp. nov. from China. Phytotaxa 464: 175-182. https://doi.org/10.11646/phytotaxa.464.2.4 Yang J, He SH (2014) Hymenochaete in China. 8. H. biformisetosa sp. nov. with a key to spe- cies with denticulate setae. Mycotaxon 128: 137-144. https://doi.org/10.5248/128.137 Yang J, Dai LD, He SH (2016) Hymenochaetopsis nom. nov. proposed to replace Pseu- dochaete (Hymenochaetales, Basidiomycota) with descriptions of H. laricicola sp. nov and H. gigasetosa new to China. Mycological Progress 15: 13. https://doi. org/10.1007/s11557-015-1153-9 Yu J, Wang XW, Liu SL, Shen S, Zhou LW (2021) Taxonomy and phylogeny of Resinicium sensu lato from Asia-Pacific revealing a new genus and five new species (Hymenochae- tales, Basidiomycota). IMA Fungus 12: 19. https://doi.org/10.1186/s43008-021-00071-1 Yuan Y, Bian LS, Wu YD, Chen JJ, Wu F, Liu HG, Zeng GY, Dai YC (2023) Species diversity of pathogenic wood-rotting fungi (Agaricomycetes, Basidiomycota) in China. Mycol- ogy 14: 204-226. https://doi.org/10.1080/21501203.2023.2238779 Yuan Q, Li Y, Dai Y, Wang K, Wang Y, Zhao C (2024) Morphological and molecular iden- tification for four new wood-inhabiting species of Lyomyces (Basidiomycota) from China. MycoKeys 110: 67-92. https://doi.org/10.3897/mycokeys.110.133108 Yurchenko E, Wu SH (2014) Three new species of Hyphodontia with peg-like hyphal aggrega- tions. Mycological Progress 13: 533-545. https://doi.org/10.1007/s11557-013-0935-1 Yurchenko E, Riebesehl J, Langer E (2017) Clarification of Lyomyces sambuci com- plex with the descriptions of four new species. Mycological Progress 16: 865-876. https://doi.org/10.1007/s11557-01 7-1321-1 Yurchenko E, Riebesehl J, Langer E (2020a) Fasciodontia gen. nov. (Hymenochaetales, Basidiomycota) and the taxonomic status of Deviodontia. Mycological Progress 19: 171-184. https://doi.org/10.1007/s11557-019-01554-7 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 65 Yinglian Deng et al.: Morphological and molecular analyses revealed four new wood-inhabiting species Yurchenko E, Wu SH, Maekawa N (2020b) Three new species of Peniophorella (Basid- iomycota) from East Asia. Nova Hedwigia 111: 473-495. https://doi.org/10.1127/ nova_hedwigia/2020/0598 Zhang J, Hou YH, Du JF, Zhou QS, Li N (2023a) A comparative study on immunomod- ulatory effects of water extracts of Inonotus hispidus, Sanghuangporus sanghuang and S. vaninii. Mycosystema 42(4): 907-915. https://doi.org/10.13346/j.mycosyste- ma.220074 Zhang QY, Liu HG, Papp V, Zhou M, Dai YC, Yuan Y (2023b) New insights into the classifi- cation and evolution of Favolaschia (Agaricales, Basidiomycota) and its potential dis- tribution, with descriptions of eight new species. Mycosphere 14: 777-814. https:// doi.org/10.5943/mycosphere/14/1/10 Zhao CL, Wu ZQ (2017) Ceriporiopsis kunmingensis sp. nov. (Polyporales, Basidiomyco- ta) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 16: 93-100. https://doi.org/10.1007/s11557-016-1259-8 Zhao CL, He XS, Wanghe KY, Cui BK, Dai YC (2014) Flammeopellis bambusico- la gen. et. sp. nov. (Polyporales, Basidiomycota) evidenced by morphologi- cal characters andphylogenetic analysis. Mycological Progress 13: 771-780. https://doi.org/10.1007/s11557-014-0960-8 Zhao CL, Chen H, Song J, Cui BK (2015) Phylogeny and taxonomy of the genus Abundis- porus (Polyporales, Basidiomycota). Mycological Progress 14: 38. https://doi. org/10.1007/s11557-015-1062-y Zhao CL, Wu F, Dai YC (2016) Leifiporia rhizomorpha gen. et sp. nov. and L. eucalypti comb. nov. in Polyporaceae (Basidiomycota). Mycological Progress 15: 799-809. https://doi.org/10.1007/s11557-016-1210-z Zhao CL, Qu MH, Huang RX, Karunarathna SC (2023b) Multi-gene phylogeny and taxon- omy of the wood-rotting fungal genus Phlebia sensu lato (Polyporales, Basidiomyco- ta). Journal of Fungi 9: 1-41. https://doi.org/10.3390/jof9030320 Zhao H, Dai YC, Wu F, Liu XY, Maurice S, Krutovsky KV, Pavlov IN, Lindner DL, Martin FM, Yuan Y (2023a) Insights into the ecological diversification of the Hymenochaetales based on comparative genomics and phylogenomics. Genome Biology and Evolution 15(8): 1-15. https://doi.org/10.1093/gbe/evad136 Zhao H, Wu YD, Yang ZR, Liu HG, Wu F, Dai YC, Yuan Y (2024) Polypore fungal and species diversity in tropical forest ecosystems of Africa, America and Asia, and a comparison with temperate and boreal regions of the Northern Hemisphere. Forest Ecosystems 11: 100200. https://doi.org/10.1016/j.fecs.2024.100200 Zhou LW, Vlasak J, Dai YC (2016) Taxonomy and phylogeny of Phellinidium (Hymeno- chaetales, Basidiomycota): A redefinition and the segregation of Coniferiporia gen. nov. for forest pathogens. Fungal Biology 120: 988-1001. https://doi.org/10.1016/j. funbio.2016.04.008 Zhou M, Wu F, Dai YC, Vlasak J (2022) Two new species of Phylloporia (Hymenochae- tales) from the Neotropics. MycoKeys 90: 71-83. https://doi.org/10.3897/mycok- eys.90.84767 Zhou M, Dai YC, Viasak J, Liu HG, Yuan Y (2023) Updated systematics of Trichaptum s.l. (Hymenochaetales, Basidiomycota). Mycosphere 14: 815-917. https://doi. org/10.5943/mycosphere/14/1/11 MycoKeys 117: 29-66 (2025), DOI: 10.3897/mycokeys.117.146236 66