The African citrus psyllid, Trioza erytreae (Del Guercio) (Hemiptera, Triozidae), is native to tropical Africa and invasive species in North America and Europe. The main host plants are citrus, displaying a preference for lemon trees. This psyllid was recently detected in the northwest region of the Iberian Peninsula, both in Spain and Portugal. Here, we used a model combining a reaction-diffusion model to a stochastic long-distance dispersal model to simulate the invasion dynamics of T. erytreae in Portugal. The psyllid spread in Portugal was simulated between 2015 and 2021 for different combinations of model parameters: two fecundity levels; spread with and without stochastic long-distance dispersal; single or two introductions of T. erytreae; and considering or not the urban and peri-urban citrus trees, besides citrus orchards, estimated using Google Street view imagery. The incorporation of long-distance human mediated dispersal significantly improved the F1-score in the model validation using the official reports as the observed data. Concomitantly, the dispersal rate of T. erytreae in Portugal was on average about 66 km/year, whereas removing long-distance dispersal events, the observed mean was 7.8 ± 0.3 km/year. The dispersal was mainly towards the south along the coastline, where human population is concentrated. The inclusion of the estimated citrus trees outside orchards areas significantly increased the F1-score in the model validation, revealing the importance these isolated host plants hold as stepping stones for the species current invasion and possibly for other species alike.